常见的C++版跟踪器代码

本文介绍了一种KCF跟踪算法的C++实现方法,提供了在Ubuntu环境下运行的代码和详细安装步骤。通过对比检测框文件与真实值,评估算法性能。

KCF跟踪算法(1):KCF跟踪demo

C++ 跟踪代码

有大神将TLD代码整理成C++形式,可以在Ubuntu下跑通,这是实现方法。

This will be a C++ implementations of the OpenTLD (aka Predator)
----------------------------------------------------------------------------
This is a work in progress, as of right now the code is functional but pretty slow.
----------------------------------------------------------------------------
Installation Notes
=====================================
git clone git@github.com:alantrrs/OpenTLD.git
cd OpenTLD
mkdir build
cd build
cmake ../src/
make
cd ../bin/
%To run from camera
./run_tld -p ../parameters.yml
%To run from file
./run_tld -p ../parameters.yml -s ../datasets/06_car/car.mpg
%To init bounding box from file
./run_tld -p ../parameters.yml -s ../datasets/06_car/car.mpg -b ../datasets/06_car/init.txt
%To train only in the firs frame (no tracking, no learning)
./run_tld -p ../parameters.yml -s ../datasets/06_car/car.mpg -b ../datasets/06_car/init.txt -no_tl 
%To test the final detector (Repeat the video, first time learns, second time detects)
./run_tld -p ../parameters.yml -s ../datasets/06_car/car.mpg -b ../datasets/06_car/init.txt -r

=====================================
Evaluation
=====================================
The output of the program is a file called bounding_boxes.txt which contains all the detections made through the video. This file should be compared with the ground truth file to evaluate the performance of the algorithm. This is done using a python script:
python ../datasets/evaluate_vis.py ../datasets/06_car/car.mpg bounding_boxes.txt ../datasets/06_car/gt.txt

====================================
Thanks
====================================
To Zdenek Kalal for realeasing his awesome algorithm

打算这就在TX1上实验,看看效果如何,希望顺利!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值