论文阅读

Paper-Reading

NeurIPS 2017:

  1. Attention Is All You Need
    paper:https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

CVPR 2020:

  1. Data Uncertainty Learning in Face Recognition
    paper:https://openaccess.thecvf.com/content_CVPR_2020/papers/Chang_Data_Uncertainty_Learning_in_Face_Recognition_CVPR_2020_paper.pdf
  2. Variational Neural Network Pruning
    paper:https://openaccess.thecvf.com/content_CVPR_2019/papers/Zhao_Variational_Convolutional_Neural_Network_Pruning_CVPR_2019_paper.pdf

NeurIPS 2020:

  1. Uncertainty Aware Semi-Supervised Learning on Graph Data
    presentation:https://nips.cc/virtual/2020/protected/poster_968c9b4f09cbb7d7925f38aea3484111.html
    paper:https://proceedings.neurips.cc/paper/2020/file/968c9b4f09cbb7d7925f38aea3484111-Paper.pdf
  2. Uncertainty-aware Self-training for Few-shot Text Classification
    presentation:https://nips.cc/virtual/2020/protected/poster_f23d125da1e29e34c552f448610ff25f.html
    paper:https://proceedings.neurips.cc/paper/2020/file/f23d125da1e29e34c552f448610ff25f-Paper.pdf
  3. PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks
    presentation:https://nips.cc/virtual/2020/protected/poster_8fb134f258b1f7865a6ab2d935a897c9.html
    paper:https://proceedings.neurips.cc/paper/2020/file/8fb134f258b1f7865a6ab2d935a897c9-Paper.pdf
  4. Variational Inference for Graph Convolutional Networks in the Absence of Graph Data and Adversarial Settings
    presentation:https://nips.cc/virtual/2020/protected/poster_d882050bb9eeba930974f596931be527.html
    paper:https://proceedings.neurips.cc/paper/2020/file/d882050bb9eeba930974f596931be527-Paper.pdf
  5. Random Walk Graph Neural Networks
    presentation:https://nips.cc/virtual/2020/protected/poster_ba95d78a7c942571185308775a97a3a0.html
    paper:https://proceedings.neurips.cc/paper/2020/file/ba95d78a7c942571185308775a97a3a0-Paper.pdf
  6. Graph Random Neural Networks for Semi-Supervised Learning on Graphs
    presentation:https://nips.cc/virtual/2020/protected/poster_fb4c835feb0a65cc39739320d7a51c02.html
    paper:https://proceedings.neurips.cc/paper/2020/file/fb4c835feb0a65cc39739320d7a51c02-Paper.pdf
  7. Factorizable Graph Convolutional Networks
    presentation:https://nips.cc/virtual/2020/protected/poster_ea3502c3594588f0e9d5142f99c66627.html
    paper:https://proceedings.neurips.cc/paper/2020/file/ea3502c3594588f0e9d5142f99c66627-Paper.pdf
  8. Building Powerful and Equivariant Graph Neural Networks with Structural Message-passing
    presentation:https://nips.cc/virtual/2020/protected/poster_a32d7eeaae19821fd9ce317f3ce952a7.html
    paper:https://proceedings.neurips.cc/paper/2020/file/a32d7eeaae19821fd9ce317f3ce952a7-Paper.pdf
  9. Bayesian Attention Module
    presentation:https://nips.cc/virtual/2020/protected/poster_bcff3f632fd16ff099a49c2f0932b47a.html
    paper:https://proceedings.neurips.cc/paper/2020/file/bcff3f632fd16ff099a49c2f0932b47a-Paper.pdf
  10. Auto Learning Attention
    presentation:https://nips.cc/virtual/2020/protected/poster_103303dd56a731e377d01f6a37badae3.html
    paper:https://proceedings.neurips.cc/paper/2020/file/103303dd56a731e377d01f6a37badae3-Paper.pdf
  11. Implicit Graph Neural Networks
    presentation:https://nips.cc/virtual/2020/protected/poster_8b5c8441a8ff8e151b191c53c1842a38.html
    paper:https://proceedings.neurips.cc/paper/2020/file/8b5c8441a8ff8e151b191c53c1842a38-Paper.pdf
  12. Pointer Graph Networks
    presentation:https://nips.cc/virtual/2020/protected/poster_176bf6219855a6eb1f3a30903e34b6fb.html
    paper:https://proceedings.neurips.cc/paper/2020/file/176bf6219855a6eb1f3a30903e34b6fb-Paper.pdf

FER paper:

  1. Suppressing Uncertainties for Large-Scale Facial Expression Recognition
    paper:https://openaccess.thecvf.com/content_CVPR_2020/papers/Wang_Suppressing_Uncertainties_for_Large-Scale_Facial_Expression_Recognition_CVPR_2020_paper.pdf

AAAI 2021:

  1. UAG: Uncertainty-Aware Attention Graph Neural Network for Defending Adversarial Attacks
    paper:https://virtual.2021.aaai.org/paper_AAAI-447.html
  2. Uncertainty-Matching Graph Neural Networks to Defend against Poisoning Attacks
    paper:https://virtual.2021.aaai.org/paper_AAAI-4382.html
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值