思路:每到达一个位置有3种选择,分别是步行(+1)、步行(-1)、传送(*2),所以要用广度优先搜索bfs,把所有符合条件即的下一步路线(即不会在下一步就产生越界的路线)都加入到队列中作为候选。首先考虑一种特殊情况,即n>=k,此时只能后退,所以花费的时间为n-k;若n< k,则需要使用bfs来找出一条耗时最少的方案。
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Line 1: Two space-separated integers: N and K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample Input
5 17
Sample Output
4
Hint
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
#include <iostream>
#include<queue>
using namespace std;
int step[100002];
queue<int>q;
bool check(int length)
{
if(length>=0&&length<=100000&&!step[length])
return true;
else
return false;
}
void bfs(int n,int k)
{
int s1,s2;
q.push(n); //当前坐标入列
step[n]=1; //当前坐标是路径中的第一步
while(!q.empty()) //若队列不为空
{
s1=q.front(); //s1保存队首坐标
if(s1==k) //若刚好当前坐标等于k则输出当前步数(即时间),退出bfs
{
cout<<step[s1]-1<<endl;
return;
}
q.pop(); //队首出列
s2=s1; //s2保存队首坐标
if(check(s2+1)) //若n=n+1未被访问过,且没有越界
{
step[s2+1]=step[s2]+1; //n=n+1作为路径的下一步候选
q.push(s2+1); //入列
}
s2=s1;
if(check(s2-1)) //若n=n-1未被访问过,且没有越界
{
step[s2-1]=step[s2]+1; //n=n-1作为路径的下一步候选
q.push(s2-1); //入列
}
s2=s1;
if(check(s2*2)) //若n=n*2未被访问过,且没有越界
{
step[s2*2]=step[s2]+1; //n=n*2作为路径的下一步候选
q.push(s2*2); //入列
}
}
}
int main()
{
int n,k;
while(cin>>n>>k)
{
memset(step,0,sizeof(step));
if(n>=k)
{
cout<<n-k<<endl;
}
else
{
bfs(n,k);
}
}
return 0;
}