Complex Analysis(1)

In this series, I will summarize some meaningful conclusions as well as the poofs in the book Complex Analysis by Elias M. Stein and Rami Shakarchi.

I start from the first chapter, preliminaries to complex analysis. 

1. Some basic properties of complex number

\bullet Two different ways to represent complex number:

By definition of complex number: z=x+iy where x,y\in\mathbb{R}, i^2=-1. Comparing it with the plane coordinate we can use real and imaginary axes to represent all complex number.

Analogue to the polar coordinate we get the other form of complex number, since every vector in the plane determined by both length and direction. For the first form, we have z=x+iy=\sqrt{x^2+y^2}(\frac{x}{\sqrt{x^2+y^2}}+i\frac{y}{\sqrt{x^2+y^2}}), mark r=\sqrt{x^2+y^2} is the module of , by the definition of cosine and sine, we derive z=re^{i\theta}, where r,\theta\in\mathbb{R}, r\geq0,e^{i\theta}=cos\theta+isin\theta

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值