为计算结果建立高效可伸缩的高速缓存

本文介绍了一个使用Java实现的缓存机制,通过并发计算来提高重复计算任务的效率。该机制利用了ConcurrentHashMap和FutureTask来存储和管理计算结果,避免了多次计算相同输入的情况,从而提升了系统的响应速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

package thread.test;

public interface Computable<A,V> {
	V compute(A arg) throws InterruptedException;
}
package thread.test;

import java.math.BigInteger;

public class ExpensiveFunction implements Computable<String, BigInteger>{

	@Override
	public BigInteger compute(String arg) throws InterruptedException {
		// TODO Auto-generated method stub
		return new BigInteger(arg);
	}

}
package thread.test;

import java.util.concurrent.Callable;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;
import java.util.concurrent.FutureTask;
 

public class Memoizer<A,V> implements Computable<A, V> {
	private final ConcurrentHashMap<A,Future<V>> cache=new ConcurrentHashMap<A,Future<V>>();
	private final Computable<A, V> c; 
	
	public Memoizer(Computable<A, V> c) { 
		this.c = c;
	}

	@Override
	public V compute(final A arg) throws InterruptedException {
		while(true){
			Future<V> f=cache.get(arg); 
			if(f==null){
				System.out.println("cache中没有值");
				Callable<V> ca=new Callable<V>() {
					public V call() throws Exception {
						 
						return c.compute(arg);
					}
				};
				FutureTask<V> ft=new FutureTask<V>(ca);
				f=cache.putIfAbsent(arg, ft);
				if(f==null){
					f=ft;
					ft.run();
				} 
			}else{
				System.out.println("cache中有值");
			}
			try {
				return f.get();
			} catch (ExecutionException e) {
				// TODO Auto-generated catch block
				e.printStackTrace();
				return null;
			}
		}
	}
	

}
package thread.test;

import java.math.BigInteger;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutionException;
 
public class CallableDemo {
     public static void main(String[] args) throws InterruptedException, ExecutionException
    {
    	   
    	 final Memoizer<String, BigInteger> memo=new Memoizer<>(new ExpensiveFunction());
    	 new Thread(new Runnable() {
	 			
	 			@Override
	 			public void run() { 
	 				try {
						memo.compute("1");
					} catch (InterruptedException e) {
						// TODO Auto-generated catch block
						e.printStackTrace();
					}
	 			}
	 		}).start();
    	 new Thread(new Runnable() {
	 			
	 			@Override
	 			public void run() { 
	 				try {
						memo.compute("1");
					} catch (InterruptedException e) {
						// TODO Auto-generated catch block
						e.printStackTrace();
					}
	 			}
	 		}).start();
    	 new Thread(new Runnable() {
	 			
	 			@Override
	 			public void run() { 
	 				try {
						memo.compute("1");
					} catch (InterruptedException e) {
						// TODO Auto-generated catch block
						e.printStackTrace();
					}
	 			}
	 		}).start();
    	 new Thread(new Runnable() {
	 			
	 			@Override
	 			public void run() { 
	 				try {
						memo.compute("1");
					} catch (InterruptedException e) {
						// TODO Auto-generated catch block
						e.printStackTrace();
					}
	 			}
	 		}).start();
    	 new Thread(new Runnable() {
	 			
	 			@Override
	 			public void run() { 
	 				try {
						memo.compute("1");
					} catch (InterruptedException e) {
						// TODO Auto-generated catch block
						e.printStackTrace();
					}
	 			}
	 		}).start();
    	  
    		  
    }
          
	 
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值