pytorch网络模型可视化方法:tensorboardX

步骤:

  1. pip 安装tensorboardX
  2. from tensorboardX import SummaryWriter
  3. 关键代码:
with SummaryWriter(comment='tcn') as w:
    w.add_graph(model, input_to_model=dummy_input)
  1. 在runs所在文件夹下命令行输入:tensorboard --logdir runs
  2. 打开 http://localhost:6006/

可参考:Pytorch的网络结构可视化(tensorboardX)(详细)

示例:

import torch.nn.functional as F
from torch import nn
import torch
from ttt import TemporalConvNet
from tensorboardX import SummaryWriter
from torch.autograd import Variable

class TCN(nn.Module):
    def __init__(self, input_size, output_size, num_channels, kernel_size, dropout):
        super(TCN, self).__init__()
        self.tcn = TemporalConvNet(input_size, num_channels, kernel_size=kernel_size, dropout=dropout)
        self.linear = nn.Linear(num_channels[-1], output_size)

    def forward(self, inputs):
        """Inputs have to have dimension (N, C_in, L_in)"""
        y1 = self.tcn(inputs)  # input should have dimension (N, C, L)
        o = self.linear(y1[:, :, -1])
        return F.log_softmax(o, dim=1)

model = TCN(1, 3, [25,25,25,25], 7 ,0.2)

dummy_input = Variable(torch.rand(13, 1, 18176))  # 假设输入13张1*28*28的图片

with SummaryWriter(comment='tcn') as w:
    w.add_graph(model, input_to_model=dummy_input)

在这里插入图片描述在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值