步骤:
- pip 安装tensorboardX
- from tensorboardX import SummaryWriter
- 关键代码:
with SummaryWriter(comment='tcn') as w:
w.add_graph(model, input_to_model=dummy_input)
- 在runs所在文件夹下命令行输入:tensorboard --logdir runs
- 打开 http://localhost:6006/
可参考:Pytorch的网络结构可视化(tensorboardX)(详细)
示例:
import torch.nn.functional as F
from torch import nn
import torch
from ttt import TemporalConvNet
from tensorboardX import SummaryWriter
from torch.autograd import Variable
class TCN(nn.Module):
def __init__(self, input_size, output_size, num_channels, kernel_size, dropout):
super(TCN, self).__init__()
self.tcn = TemporalConvNet(input_size, num_channels, kernel_size=kernel_size, dropout=dropout)
self.linear = nn.Linear(num_channels[-1], output_size)
def forward(self, inputs):
"""Inputs have to have dimension (N, C_in, L_in)"""
y1 = self.tcn(inputs) # input should have dimension (N, C, L)
o = self.linear(y1[:, :, -1])
return F.log_softmax(o, dim=1)
model = TCN(1, 3, [25,25,25,25], 7 ,0.2)
dummy_input = Variable(torch.rand(13, 1, 18176)) # 假设输入13张1*28*28的图片
with SummaryWriter(comment='tcn') as w:
w.add_graph(model, input_to_model=dummy_input)