Given two positive integers G and L, could you tell me how many solutions of (x, y, z) there are, satisfying that gcd(x, y, z) = G and lcm(x, y, z) = L?
Note, gcd(x, y, z) means the greatest common divisor of x, y and z, while lcm(x, y, z) means the least common multiple of x, y and z.
Note 2, (1, 2, 3) and (1, 3, 2) are two different solutions.
Input
First line comes an integer T (T <= 12), telling the number of test cases.
The next T lines, each contains two positive 32-bit signed integers, G and L.
It’s guaranteed that each answer will fit in a 32-bit signed integer.
Output
For each test case, print one line with the number of solutions satisfying the conditions above.
Sample Input
2
6 72
7 33
Sample Output
72
0
题目链接
给定三个数的gcd和lcm,求可能的三个数的组合有多少种。这个需要用唯一分解定理,每一个数都能分成若干个素数的幂的乘积的形式。
三个数分解完之后,gcd是取每个素数的最小次幂的乘积,lcm是取每个素数的最大次幂乘积,这样如果gcd中分解出来的素数lcm一定有,如果没有,那么就是错误的,直接输出0。否则,假设同一个素数,在gcd中和lcm中的幂分别是num1和num2,那么这三个数中一定有一个含有最高次幂,一个含有最低次幂,剩下的都可以,这里就用到容斥原理了,也就是:
tmp = (num1-num2+1)(num1-num2+1)(num1-num2+1); //所有的可能结果
tmp -= 2*(num1-num2)(num1-num2)(num1-num2); //减去一个没有num1的情况和没有num2的情况
tmp += (num1-num2-1)(num1-num2-1)(num1-num2-1); //多减了一次num1,num2都没有的情况,再加上
我参考的某位的代码,可能很长,很繁琐,不如别人来的精简,但是我感觉能从里面学到点东西。
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <math.h>
#include <map>
using namespace std;
const int MAXN = 1e6 + 5;
int prime[MAXN], a[100], b[100]; // prime[0] is used to store the number of prime
int fatCnt;
long long factor[100][2];
map<int, int> mp1, mp2; //对应项指数
void getPrime()
{
memset(prime, 0, sizeof(prime));
for(int i = 2; i <= MAXN; i++)
{
if(!prime[i]) prime[++prime[0]] = i;
for(int j = 1; j <= prime[0] && prime[j] <= MAXN / i; j++)
{
prime[prime[j] * i] = 1;
if(i % prime[j] == 0) break; //如果这个乘数是这个素数的倍数,那么就可以直接退出了,因为这在之前已经遍历过了
}
}
}
int getFactors(long long x)
{
fatCnt = 0;
long long tmp = x;
for(int i = 1; prime[i] <= tmp / prime[i]; i++)
{
factor[fatCnt][1] = 0;
if(tmp % prime[i] == 0)
{
factor[fatCnt][0] = prime[i];
while(tmp % prime[i] == 0)
{
factor[fatCnt][1] ++;
tmp /= prime[i];
}
fatCnt++;
}
}
if(tmp != 1)
{
factor[fatCnt][0] = tmp;
factor[fatCnt++][1] = 1;
}
return fatCnt;
}
int main()
{
getPrime(); //初始化素数
int n, m;
int T;
scanf("%d", &T);
while(T--)
{
scanf("%d%d", &n, &m);
mp1.clear();
mp2.clear();
getFactors(m);
int cnt1 = fatCnt;
for(int i = 0; i < cnt1; i++)
{
mp1[factor[i][0]] = factor[i][1];
a[i] = factor[i][0];
}
getFactors(n);
int cnt2 = fatCnt;
bool flag = true;
for(int i = 0;i < cnt2;i++)
{
mp2[factor[i][0]] = factor[i][1];
if(mp1[factor[i][0]] < factor[i][1]) //只要有lcm里面的因子比gcd里面的还小,那么一定是不对的
flag = false;
b[i] = factor[i][0];
//printf("%I64d %I64d\n",factor[i][0],factor[i][1]);
}
if(!flag)
{
printf("0\n");
continue;
}
int ans = 1;
for(int i = 0; i < cnt1; i++)
{
int num1 = mp1[a[i]];
int num2 = mp2[a[i]];
if(num1 == num2)
ans *= 1;
else
{
//3个数p的指数必须在num1~num2之间,而且必须有一个为num1,一个为num2
long long tmp = (num1-num2+1)*(num1-num2+1)*(num1-num2+1); //所有的可能结果
tmp -= 2*(num1-num2)*(num1-num2)*(num1-num2); //减去一个没有num1的情况和没有num2的情况
tmp += (num1-num2-1)*(num1-num2-1)*(num1-num2-1); //多减了一次num1,num2都没有的情况,再加上
ans *= tmp;
}
}
printf("%d\n",ans);
}
return 0;
}