批量修改图片命,使其名为0.png 1.png 2.png
path_name = r'D:\Jupyter Notebook\save_image\test' #原图片所在路径
i = 0
for item in os.listdir(path=path_name):
new_item = str(i)+'.jpg' #元图片均为.bmp格式
os.rename(os.path.join(path_name,item), os.path.join(path_name,new_item))
file_path = os.path.join(path_name, new_item)
new_out = os.path.join(path_name, new_item)# print(new_out)
print(new_out)
out_path = os.path.splitext((new_out))[0] + '.png'
print(out_path)
Image.open(file_path).save(out_path)
os.remove(os.path.join(path_name, new_item))
i+=1
基于这句 keras.model.fit(x_train,y_train,epochs=5,batch_size=32)来看,这里的x_train,y_train是训练数据,拿二分类来说,这里的x_train包含两部分数据,一个是正样本,一个是负样本。
正样本数据导入:
import os
from PIL import Image
import numpy as np
def load_data():
x_train_r = np.empty((36740, 64, 64, 3), dtype="float32")
images = os.listdir('D:/GAN/GAN_1/extra_data/extra_data/images/')
lens = len(images)
for i in range(lens):
img = Image.open('D:/GAN/GAN_1/extra_data/extra_data/images/' + images[i])
arr = np.asarray(img, dtype="float32")
x_train[i, :, :, :] = arr
return x_train_r
x_train_r = load_data()
y_train_r = np.ones((36740,1))
负样本导入:
仿照上面同样方法:
x_train_f = load.data()
y_train_f = np.zeros((36740,1))
开始数据拼接:
x_train = np.concatenate((x_train_r, x_train_f))
y_train = np.concatenate((y_train_r, y_train_f))
然后就可以compile了