hive开窗/窗口函数

本文深入探讨了数据库中的窗口函数,包括其语法规则、各种函数类型如排位函数、聚合函数、偏移函数和分布函数的使用。通过实例展示了如何在不减少数据行数的情况下实现分组、排序、累计和统计等功能。窗口函数在数据查询和分析中发挥着重要作用,能够高效地处理复杂的数据操作需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

想象这样一种场景,既想保留所有数据,又想得到按某几列分组的聚合值,或者再对数据进行排序,要如何实现呢?这时候开窗函数就有了用武之地,聚合函数每组只保留一个值,而开窗函数可以在不减少原表行数的情况下,实现分组和排序的功能。

语法规则

窗口函数 over (partition by <用于分组的列名> order by <用于排序的列名> [desc] <倒序排列>)

排位函数

括号里留空,不写参数

  1. rank() 相等的值排名相同,但若有相等的值,则序号从1到n不连续。如果有两个人都排在第3名,则没有第4名。
  2. dense_rank() 相等的值排名相同,但序号从1到n连续。如果有两个人都排在第3名,则第五个人排在第4名。
  3. row_number() 相等的值对应的排名不同,序号从1到n连续。可以理解为行号。
select *,
   rank() over (partition by class order by score desc) as ranking,
   dense_rank() over (partition by class order by score desc) as dese_rank,
   row_number() over (partition by class order by score desc) as row_num
from test.demo_windows;

在这里插入图片描述

聚合函数

sum(),count(),max(),min(), avg() 等
聚合函数作为窗口函数相当于截止到当前数据的累计值

select *,
   sum(score) over (partition by class order by score desc) as current_sum,
   avg(score) over (partition by class order by score desc) as current_avg,
   count(score) over (partition by class order by score desc) as current_count,
   max(score) over (partition by class order by score desc) as current_max,
   min(score) over (partition by class order by score desc) as current_min
from test.demo_windows;

在这里插入图片描述
从上图的结果我们可以发现,当order by 排序的字段相同时,相同的数据会一起计算出来,要注意计算的是截止到当前值而不是当前行。如果要实现逐行累计,则需要添加语句:

rows between unbounded preceding and current row

表明范围,从第一行到当前行

select *,
   sum(score) over (partition by class order by score desc rows between unbounded preceding and current row) as current_sum,
   avg(score) over (partition by class order by score desc rows between unbounded preceding and current row) as current_avg,
   count(score) over (partition by class order by score desc rows between unbounded preceding and current row) as current_count,
   max(score) over (partition by class order by score desc rows between unbounded preceding and current row) as current_max,
   min(score) over (partition by class order by score desc rows between unbounded preceding and current row) as current_min
from test.demo_windows;

在这里插入图片描述

偏移函数

  1. lead(col,n,默认值) :用于统计窗口内往下第n行值。第一个参数为列名,第二个参数为往下第n行(可选,默认为1),第三个参数为默认值,当往下第n行为NULL时取默认值,如不指定则为NULL。
  2. lag(col,n,默认值) :与lead相反,用于统计窗口内往上第n行值。
  3. first_value():取分组内排序后,截止到当前行,第一个值
  4. last_value(): 取分组内排序后,截止到当前行,最后一个值
select *, 
lead(name,1) over (partition by class order by score desc) as lead_1, 
lead(name,1,999) over (partition by class order by score desc) as lead_null, 
lag(name,1) over (partition by class order by score desc) as lag_1,
lag(name,1,999) over (partition by class order by score desc) as lag_null,
first_value(name) over (partition by class order by score desc) as first_value,
last_value(name) over (partition by class order by score desc) as last_value
from test.demo_windows ;

在这里插入图片描述

分布函数

  1. ntile(n) 用于将分组数据按照顺序切分成n片,返回当前切片值,如果切片不均匀,默认增加第一个切片的分布,各个切片能放的数据条数最多相差1。
    按分位数统计的时候可以用,比如取销量前四分之一的数据,筛选ntile(4) = 1 即为想要的结果
select *, 
	ntile(2) over (partition by class order by score desc) as nt_2, 
	ntile(3) over (partition by class order by score desc) as nt_3 
from test.demo_windows ;

在这里插入图片描述

  1. CUME_DIST() 小于等于当前值的行数/分组内总行数;如果是降序排列,则统计大于等于当前值的行数/总行数。
  2. PERCENT_RANK() 分组内当前行的RANK值-1/分组内总行数-1。
select *, 
cume_dist() over (partition by class order by score desc) as cume_dist, 
percent_rank() over (partition by class order by score desc) as percent_rank 
from test.demo_windows ;

在这里插入图片描述

参考文章:
https://zhuanlan.zhihu.com/p/92654574
https://blog.youkuaiyun.com/dingchangxiu11/article/details/83145151

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值