PyTorch 深度学习 || 1. 基础 | Ch1.1 神经网络基础

本文介绍了神经网络的基础知识,从神经元模型到单层和两层神经网络,再到多层神经网络和深度学习。神经网络是深度学习的基础,本文详细讲述了其历史、发展和关键概念,包括感知器、多层感知器、反向传播算法以及深度学习的崛起。通过对神经网络的学习,读者可以理解其工作原理和在人工智能中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

神经网络基础

神经网络是一门重要的机器学习技术。它是目前最为火热的研究方向–深度学习的基础。学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助你理解深度学习技术。

神经网络是一种模拟人脑的神经网络以期能够实现类人工智能的机器学习技术。人脑中的神经网络是一个非常复杂的组织。成人的大脑中估计有1000亿个神经元之多。

在这里插入图片描述
图:人脑神经网络

那么机器学习中的神经网络是如何实现这种模拟的,并且达到一个惊人的良好效果的?通过本文,你可以了解到这些问题的答案,同时还能知道神经网络的历史,以及如何较好地学习它。

1. 神经网络的提出

对于神经元的研究由来已久,1904年生物学家就已经知晓了神经元的组成结构。

一个神经元通常具有多个树突,主要用来接受传入信息;而轴突只有一条,轴突尾端有许多轴突末梢可以给其他多个神经元传递信息。轴突末梢跟其他神经元的树突产生连接,从而传递信号。这个连接的位置在生物学上叫做“突触”。

人脑中的神经元形状可以用下图做简单的说明

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值