r语言aggredate_R语言 分组计算,不止group_by

本文介绍了R语言中的分组计算方法,包括dplyr包的group_by和summarise组合使用,ddply的split-apply-combine思想,以及aggregate函数的分组计算。通过实例展示了如何进行单变量和多变量的分组计算,帮助读者理解R语言中的数据分组操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在研究excel透视图,想到好像自己在R-分组操作并不是很流畅,顺便学习分享一下。R自带数据集比较多,今天就选择一个我想对了解的mtcars数据集带大家学习一下R语言中的分组计算(操作)。

目录

1 dplyr包中的group_by联合summarize

1.1 group_by语法

1.2 summarise语法

1.3 group_by和summarise单变量分组计算

1.4 group_by和summarise多变量分组计算

2 ddply

2.1 ddply语法

2.2 ddply分组计算示例

3 aggregate

3.1 aggregate语法

3.2 aggregate分组计算示例

3.3 aggregate分组计算补充(formula形式)

4 splite

正文

首先给大家看一下mtcars数据集的基本情况,data.frame类型,32个观测对象,11个变量。

> head(mtcars)

mpg cyl disp hp drat wt qsec vs am gear carb

Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4

Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4

Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1

Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1

Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2

Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

> str(mtcars)

'data.frame': 32 obs. of 11 variables:

$ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...

$ cyl : num 6 6 4 6 8 6 8 4 4 6 ...

$ disp: num 160 160 108 258 360 ...

$ hp : num 110 110 93 110 175 105 245 62 95 123 ...

$ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...

$ wt : num 2.62 2.88 2.32 3.21 3.44 ...

$ qsec: num 16.5 17 18.6 19.4 17 ...

$ vs : num 0 0 1 1 0 1 0 1 1 1 ...

$ am : num 1 1 1 0 0 0 0 0 0 0 ...

$ gear: num 4 4 4 3 3 3 3 4 4 4 ...

$ carb: num 4 4 1 1 2 1 4 2 2 4 ...

1 dplyr包中的group_by联合summarize</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值