神经网络python识别语义_ENet - 一种用于实时语义分割的神经网络体系结构

本仓库实现了ENet论文中提出的实时语义分割神经网络。提供了一个Colab笔记本供使用,可以训练和测试模型。预训练模型已在CamVid数据集上训练,更多模型即将开放源代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ENet - Real Time Semantic Segmentation

A Neural Net Architecture for real time Semantic Segmentation.

In this repository we have reproduced the ENet Paper - Which can be used on mobile devices for real time semantic segmentattion. The link to the paper can be found here: ENet

How to use?

This repository comes in with a handy notebook which you can use with Colab.

You can find a link to the notebook here: ENet - Real Time Semantic Segmentation

Open it in colab: Open in Colab

Clone the repository and cd into it

git clone https://github.com/iArunava/ENet-Real-Time-Semantic-Segmentation.git

cd ENet-Real-Time-Semantic-Segmentation/

Use this command to train the model

python3 init.py --mode train -iptr path/to/train/input/set/ -lptr /path/to/label/set/

Use this command to test the model

python3 init.py --mode test -m /path/to/the/pretrained/model.pth -i /path/to/image/to/infer.png

Use --help to get more commands

python3 init.py --help

Some results

Pretrained models

We plan to open source more pretrained models which are better.

For now, we have only open sourced one pretrained model, which is trained on CamVid dataset.

Find it here: Pretrained ENet on CamVid

References

A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello. Enet: A deep neural network architecture for real-time semantic segmentation. arXiv preprint arXiv:1606.02147, 2016.

Citations

@inproceedings{ BrostowSFC:ECCV08,

author = {Gabriel J. Brostow and Jamie Shotton and Julien Fauqueur and Roberto Cipolla},

title = {Segmentation and Recognition Using Structure from Motion Point Clouds},

booktitle = {ECCV (1)},

year = {2008},

pages = {44-57}

}

@article{ BrostowFC:PRL2008,

author = "Gabriel J. Brostow and Julien Fauqueur and Roberto Cipolla",

title = "Semantic Object Classes in Video: A High-Definition Ground Truth Database",

journal = "Pattern Recognition Letters",

volume = "xx",

number = "x",

pages = "xx-xx",

year = "2008"

}

License

The code in this repository is distributed under the BSD v3 Licemse.

Feel free to fork and enjoy :)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值