## *sparkstreaming解析Json存入Hbase*

本文介绍如何使用Spark Streaming整合Kafka进行实时数据处理,包括配置Maven依赖、搭建Spark与Kafka环境、实现数据读取及处理流程,最后将处理后的数据写入HBase。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据格式
{“name”:“Michael”, “age”:25}

pom文件依赖

    <maven.compiler.source>1.8</maven.compiler.source>
    <maven.compiler.target>1.8</maven.compiler.target>
    <scala.version>2.11.8</scala.version>
    <spark.version>2.2.0</spark.version>
    <hadoop.version>2.7.3</hadoop.version>
<dependencies>
    <!-- 导入scala的依赖 -->
    <dependency>
        <groupId>org.scala-lang</groupId>
        <artifactId>scala-library</artifactId>
        <version>${scala.version}</version>
    </dependency>
    <!-- 导入spark的依赖 -->
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-core_2.11</artifactId>
        <version>${spark.version}</version>
    </dependency>
    <!-- 指定hadoop-client API的版本 -->
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-client</artifactId>
        <version>${hadoop.version}</version>
    </dependency>
    <!-- 导入spark sql的依赖 -->
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-sql_2.11</artifactId>
        <version>${spark.version}</version>
    </dependency>
    <!-- spark如果想整合Hive,必须加入hive的支持 -->
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-hive_2.11</artifactId>
        <version>2.2.0</version>
    </dependency>
    <!-- spark steaming的依赖 -->
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-streaming_2.11</artifactId>
        <version>2.2.0</version>
    </dependency>
    <!-- sparkSteaming跟Kafka整合的依赖 -->
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-streaming-kafka-0-8_2.11</artifactId>
        <version>${spark.version}</version>
    </dependency>
    <!-- mysql的连接驱动依赖 -->
    <dependency>
        <groupId>mysql</groupId>
        <artifactId>mysql-connector-java</artifactId>
        <version>5.1.38</version>
    </dependency>
    <dependency>
        <groupId>redis.clients</groupId>
        <artifactId>jedis</artifactId>
        <version>2.9.0</version>
    </dependency>
    <dependency>
        <groupId>org.apache.hbase</groupId>
        <artifactId>hbase-client</artifactId>
        <version>1.1.2</version>
    </dependency>
    <dependency>
        <groupId>org.apache.hbase</groupId>
        <artifactId>hbase-server</artifactId>
        <version>1.1.2</version>
    </dependency>
    <dependency>
        <groupId>org.apache.hbase</groupId>
        <artifactId>hbase-common</artifactId>
        <version>1.1.2</version>
    </dependency>
   <dependency>
        <groupId>org.testng</groupId>
        <artifactId>testng</artifactId>
        <version>7.0.0-beta1</version>
        <scope>compile</scope>
    </dependency>
    <dependency>
        <groupId>junit</groupId>
        <artifactId>junit</artifactId>
        <version>4.12</version>
        <scope>compile</scope>
    </dependency>
</dependencies>

代码实现

import kafka.common.TopicAndPartition
import kafka.message.MessageAndMetadata
import kafka.serializer.StringDecoder
import kafka.utils.{ZKGroupTopicDirs, ZkUtils}
import org.I0Itec.zkclient.ZkClient
import org.apache.hadoop.hbase.HBaseConfiguration
import org.apache.hadoop.hbase.client.Put
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.mapred.TableOutputFormat
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.mapred.JobConf
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SparkSession
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka.{HasOffsetRanges, KafkaUtils, OffsetRange}
import org.apache.spark.streaming.{Duration, StreamingContext}


/**
  * Created by zx on 2017/7/31.
  */
object demo {
  def main(args: Array[String]): Unit = {
    //指定组名
    val group = "g1"
    //创建SparkConf
    val conf = new SparkConf().setAppName("OrderCount").setMaster("local[4]")
    //创建SparkStreaming,并设置间隔时间
    val ssc = new StreamingContext(conf, Duration(5000))
    //指定消费的 topic 名字
    val topic = "newjson"
    //指定kafka的broker地址(sparkStream的Task直连到kafka的分区上,用更加底层的API消费,效率更高)
    val brokerList = "hd-3:9092"
    //指定zk的地址,后期更新消费的偏移量时使用(以后可以使用Redis、MySQL来记录偏移量)
    val zkQuorum = "hd-2:2181,hd-3:2181,hd-4:2181"
    //创建 stream 时使用的 topic 名字集合,SparkStreaming可同时消费多个topic
    val topics: Set[String] = Set(topic)

    //创建一个 ZKGroupTopicDirs 对象,其实是指定往zk中写入数据的目录,用于保存偏移量
    val topicDirs = new ZKGroupTopicDirs(group, topic)
    //获取 zookeeper 中的路径 "/g001/offsets/wordcount/"
    val zkTopicPath = s"${topicDirs.consumerOffsetDir}"

    val hbaseConf = HBaseConfiguration.create()
    hbaseConf.set("hbase.zookeeper.quorum", "hd-2,hd-3,hd-4")
    hbaseConf.set("hbase.zookeeper.property.clientPort", "2181")

    val tableName = "circle"
    val jobConf = new JobConf(hbaseConf)
    jobConf.setOutputFormat(classOf[TableOutputFormat])
    jobConf.set(TableOutputFormat.OUTPUT_TABLE, tableName)

    //准备kafka的参数
    val kafkaParams = Map(
      //"key.deserializer" -> classOf[StringDeserializer],
      //"value.deserializer" -> classOf[StringDeserializer],
      //"deserializer.encoding" -> "GB2312", //配置读取Kafka中数据的编码
      "metadata.broker.list" -> brokerList,
      "group.id" -> group,
      //从头开始读取数据
      "auto.offset.reset" -> kafka.api.OffsetRequest.SmallestTimeString
    )

    //zookeeper 的host 和 ip,创建一个 client,用于跟新偏移量量的
    //是zookeeper的客户端,可以从zk中读取偏移量数据,并更新偏移量
    val zkClient = new ZkClient(zkQuorum)
    val children = zkClient.countChildren(zkTopicPath)
    var kafkaStream: InputDStream[(String, String)] = null
    //如果 zookeeper 中有保存 offset,我们会利用这个 offset 作为 kafkaStream 的起始位置
    var fromOffsets: Map[TopicAndPartition, Long] = Map()

    //如果保存过 offset
    //注意:偏移量的查询是在Driver完成的
    if (children > 0) {
      for (i <- 0 until children) {
        // /g001/offsets/wordcount/0/10001
        // /g001/offsets/wordcount/0
        val partitionOffset = zkClient.readData[String](s"$zkTopicPath/${i}")
        // wordcount/0
        val tp = TopicAndPartition(topic, i)
        //将不同 partition 对应的 offset 增加到 fromOffsets 中
        // wordcount/0 -> 10001
        fromOffsets += (tp -> partitionOffset.toLong)
      }
      //Key: kafka的key   values: "hello tom hello jerry"
      //这个会将 kafka 的消息进行 transform,最终 kafak 的数据都会变成 (kafka的key, message) 这样的 tuple
      val messageHandler = (mmd: MessageAndMetadata[String, String]) => (mmd.key(), mmd.message())

      //通过KafkaUtils创建直连的DStream(fromOffsets参数的作用是:按照前面计算好了的偏移量继续消费数据)
      //[String, String, StringDecoder, StringDecoder,     (String, String)]
      //  key    value    key的解码方式   value的解码方式
      kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder, (String, String)](ssc, kafkaParams, fromOffsets, messageHandler)
    } else {
      //如果未保存,根据 kafkaParam 的配置使用最新(largest)或者最旧的(smallest) offset
      kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics)
    }
    //偏移量的范围
    var offsetRanges = Array[OffsetRange]()

    //kafkaStream.foreachRDD里面的业务逻辑是在Driver端执行
    kafkaStream.foreachRDD{ kafkaRDD =>
      //判断当前的kafkaStream中的RDD是否有数据
      if(!kafkaRDD.isEmpty()) {
        //只有KafkaRDD可以强转成HasOffsetRanges,并获取到偏移量
        offsetRanges = kafkaRDD.asInstanceOf[HasOffsetRanges].offsetRanges
        val lines: RDD[String] = kafkaRDD.map(_._2)
        //创建sparksql解析json数据
        val spark1 = SparkSession.builder().getOrCreate()
        val df = spark1.read.json(lines)
        df.createOrReplaceTempView("temp")
        val ans = spark1.sql(" select name,age from temp").rdd.map(x => {
          (x.getString(0), x.getString(1))
        })
        //写入hbase
        ans.map(line =>{
          val put = new Put(Bytes.toBytes(line._1))
          put.addColumn(Bytes.toBytes("cf"), Bytes.toBytes("keyno"), Bytes.toBytes(line._2))
          (new ImmutableBytesWritable, put)
        }).saveAsHadoopDataset(jobConf)
        //偏移量跟新在哪一端()
        for (o <- offsetRanges) {
          //  /g001/offsets/wordcount/0
          val zkPath = s"${topicDirs.consumerOffsetDir}/${o.partition}"
          //将该 partition 的 offset 保存到 zookeeper
          //  /g001/offsets/wordcount/0/20000
          ZkUtils.updatePersistentPath(zkClient, zkPath, o.untilOffset.toString)
        }
      }
    }
    ssc.start()
    ssc.awaitTermination()
  }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值