I - Harmonic Number (调和级数+欧拉常数)

I - Harmonic Number

234 - Harmonic Number
Time Limit: 3 second(s)Memory Limit: 32 MB

In mathematics, the nth harmonic number is the sum of the reciprocals of the first n natural numbers:

In this problem, you are given n, you have to find Hn.

Input

Input starts with an integer T (≤ 10000), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n ≤ 108).

Output

For each case, print the case number and the nth harmonic number. Errors less than 10-8 will be ignored.

Sample Input

Output for Sample Input

12

1

2

3

4

5

6

7

8

9

90000000

99999999

100000000

Case 1: 1

Case 2: 1.5

Case 3: 1.8333333333

Case 4: 2.0833333333

Case 5: 2.2833333333

Case 6: 2.450

Case 7: 2.5928571429

Case 8: 2.7178571429

Case 9: 2.8289682540

Case 10: 18.8925358988

Case 11: 18.9978964039

Case 12: 18.9978964139


 

           题目所给为调和级数,欧拉给出过一个近似公式:(n很大时)

  f(n)≈ln(n)+C+1/2*n    

  欧拉常数值:C≈0.57721566490153286060651209

           代码:

           

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn = 1e6+7;
double C = 0.57721566490153286060651209;//欧拉常数
double m[maxn];
void init()
{
    m[0] = 0;
    m[1] = 1.0;
    for(int i = 2; i < maxn; i++)
        m[i] = m[i - 1]+ 1/(1.0*i);
}

int main()
{
    int t, n, cas = 0;
    scanf("%d",&t);
    double a;
    init();
    while(t--)
    {
        scanf("%d",&n);
        if(n<maxn) a = m[n];
        else  a = log(n) + C + 1.0/(2 * n);//公式
        printf("Case %d: %.10lf\n", ++cas, a);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值