【Pandas】pandas DataFrame where

Pandas2.2 DataFrame

Indexing, iteration

方法 描述
DataFrame.head([n]) 用于返回 DataFrame 的前几行
DataFrame.at 快速访问和修改 DataFrame 中单个值的方法
DataFrame.iat 快速访问和修改 DataFrame 中单个值的方法
DataFrame.loc 用于基于标签(行标签和列标签)来访问和修改 DataFrame 中的数据
DataFrame.iloc 用于基于整数位置(行号和列号)来访问和修改 DataFrame 中的数据
DataFrame.insert(loc, column, value[, …]) 用于在 DataFrame 的指定位置插入一个新的列
DataFrame.iter() 用于迭代 DataFrame 的列名
DataFrame.items() 用于迭代 DataFrame 的列名和列数据
DataFrame.keys() 返回 DataFrame 的列名
DataFrame.iterrows() 用于逐行迭代 DataFrame
DataFrame.itertuples([index, name]) 用于逐行迭代 DataFrame
DataFrame.pop(item) 用于从 DataFrame 中删除指定列
DataFrame.tail([n]) 用于返回 DataFrame 的最后 n
DataFrame.xs(key[, axis, level, drop_level]) 用于从 DataFrame 中提取一个横截面(cross-section)
DataFrame.get(key[, default]) 用于从 DataFrame 中获取指定列的数据
DataFrame.isin(values) 用于检查 DataFrame 中的每个元素是否包含在指定的值集合中
DataFrame.where(cond[, other, inplace, …]) 用于根据条件筛选 DataFrame 中的元素

pandas.DataFrame.where()

pandas.DataFrame.where(cond, other=nan, *, inplace=False, axis=None, level=None) 方法用于根据条件筛选 DataFrame 中的元素。如果条件为 True,则保留元素;如果条件为 False,则用 other 参数指定的值替换该元素。

参数
  • cond:布尔条件,可以是布尔值、布尔数组、布尔 DataFrame 或布尔 Series。
  • other:可选参数,当条件为 False 时使用的值。默认为 NaN
  • inplace:布尔值,如果为 True,则直接在原 DataFrame 上进行修改,否则返回一个新的 DataFrame。默认为 False
  • axis:指定轴,0'index'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liuweidong0802

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值