%
P
=
intp
(
X1
,
Y1
,
X2
,
Y2
)
%
求两组离散点序列的交点
%
X1
,
Y1
为第一组的横纵坐标,
X2
,
Y2
为第二组横纵坐标,横坐标必须为有序数
列。
%
返回值
P
为交点坐标,两列矩阵,第一列为横坐标,第二列为纵坐标。
function
P
=
intp
(
X1
,
Y1
,
X2
,
Y2
)
X1
=
X1
(:);
%
变为列向量
X2
=
X2
(:);
Y1
=
Y1
(:);
Y2
=
Y2
(:);
if
max
(
X1
)<
min
(
X2
)
||
max
(
X2
)<
min
(
X1
)
P
=[];
%
两个区间没有重叠,不可能有交点
return;
end
a
=
max
(
min
(
X1
),
min
(
X2
));
b
=
min
(
max
(
X1
),
max
(
X2
));
a1
=
find
(
X1
>=
a
);
a1
=
a1
(1);
a2
=
find
(
X2
>=
a
);
a2
=
a2
(1);
b1
=
find
(
X1
<=
b
);
b1
=
b1
(end);
b2
=
find
(
X2
<=
b
);
b2
=
b2
(end);
x
=
unique
([
X1
(
a1
:
b1
);
X2
(
a2
:
b2
)]);
y1
=
interp1
(
X1
,
Y1
,
x
,'linear');
y2
=
interp1
(
X2
,
Y2
,
x
,'linear');
%
找出公共部分
d
=
y1
-
y2
;
ind0
=
find
(
d
==0);
%
差为
0
的是交点。
P1
=[
x
(
ind0
),
y1
(
ind0
)];
d1
=
sign
(
d
);
%
求符号,负数为
-1
,正数为
1,
0
为
0
d2
=
abs
(
diff
(
d1
));
ind1
=
find
(
d2
==2);
%
相邻符号相差
2
的,交点在此区间内
P2
=
zeros
(
length
(
ind1
),2);
for
k
=1:
length
(
ind1
)
i1
=
ind1
(
k
);
i2
=
ind1
(
k
)+1;
x1
=
x
(
i1
);
x2
=
x
(
i2
);
ya1
=
y1
(
i1
);
ya2
=
y1
(
i2
);
yb1
=
y2
(
i1
);
yb2
=
y2
(
i2
);
%
两条线段四个端点坐标
A
=[
ya1
-
ya2
,
-(
x1
-
x2
)
yb1
-
yb2
,
-(
x1
-
x2
)];
%
二元一次方程组系数矩阵
B
=[
(
ya1
-
ya2
)*
x1
-(
x1
-
x2
)*
ya1
(
yb1
-
yb2
)*
x1
-(
x1
-
x2
)*
yb1
];
%
常数项矩阵