99.恢复二叉搜索树
二叉搜索树中的两个节点被错误地交换。
请在不改变其结构的情况下,恢复这棵树
1.dfs分情况讨论
左子树最大值与右子树最小值交换
左子树最大值与根节点交换
右子树最小值与根节点交换
左子树两个节点互换
右子树两个节点互换
class Solution {
public:
void maxNode(TreeNode* root,TreeNode* &big)
{
if(!root)return;
if(root->val>big->val)
{
big = root;
}
maxNode(root->left,big);
maxNode(root->right,big);
}
void minNode(TreeNode* root,TreeNode* &small)
{
if(!root)return;
if(root->val<small->val)
{
small = root;
}
minNode(root->left,small);
minNode(root->right,small);
}
void recoverTree(TreeNode* root) {
if(!root)return;
TreeNode* left = root->left;
TreeNode*right = root->right;
maxNode(root->left,left);
minNode(root->right,right);
if(left!=NULL && right!=NULL && left->val>root->val && root->val>right->val)
{
int temp;
temp = right->val;
right->val = left->val;
left->val = temp;
}
else if(left!=NULL && left->val>root->val)
{
int temp;
temp = root->val;
root->val = left->val;
left->val = temp;
}
else if(right!=NULL && right->val<root->val)
{
int temp;
temp = root->val;
root->val = right->val;
right->val = temp;
}
recoverTree(root->left);
recoverTree(root->right);
}
};
2.显示中序遍历,用数据结构保存,找出大小不符合的元素
(dfs或bfs)
class Solution {
public:
void inorder(TreeNode* root, vector<int>& nums) {
if (root == nullptr) {
return;
}
inorder(root->left, nums);
nums.push_back(root->val);
inorder(root->right, nums);
}
pair<int,int> findTwoSwapped(vector<int>& nums) {
int n = nums.size();
int x = -1, y = -1;
for(int i = 0; i < n - 1; ++i) {
if (nums[i + 1] < nums[i]) {
y = nums[i + 1];
if (x == -1) {
x = nums[i];
}
else break;
}
}
return {x, y};
}
void recover(TreeNode* r, int count, int x, int y) {
if (r != nullptr) {
if (r->val == x || r->val == y) {
r->val = r->val == x ? y : x;
if (--count == 0) {
return;
}
}
recover(r->left, count, x, y);
recover(r->right, count, x, y);
}
}
void recoverTree(TreeNode* root) {
vector<int> nums;
inorder(root, nums);
pair<int,int> swapped= findTwoSwapped(nums);
recover(root, 2, swapped.first, swapped.second);
}
};
3.隐式中序遍历,用pre指针保存上一个节点,当发现大小不符合时互换
(dfs或bfs)
class Solution {
public:
void recoverTree(TreeNode* root) {
if(!root)return;
stack<TreeNode*> stk;
TreeNode* x = NULL;
TreeNode* y = NULL;
TreeNode* pred = NULL;
while(root!=NULL || !stk.empty())
{
while(root!=NULL)
{
stk.push(root);
root = root->left;
}
root = stk.top();
stk.pop();
if (pred != nullptr && root->val < pred->val) {
y = root;
if (x == nullptr) {
x = pred;
}
else break;
}
pred = root;
root = root->right;
}
swap(y->val,x->val);
}
};
莫里斯遍历
将当前节点左子树中最右边的节点指向它,这样在左子树遍历完成后我们通过这个指向走回了 xx,且能再通过这个知晓我们已经遍历完成了左子树,而不用再通过栈来维护,省去了栈的空间复杂度。
保证空间复杂度O(1)
class Solution {
public:
void recoverTree(TreeNode* root) {
TreeNode *x = nullptr, *y = nullptr, *pred = nullptr, *predecessor = nullptr;
while (root != nullptr) {
if (root->left != nullptr) {
// predecessor 节点就是当前 root 节点向左走一步,然后一直向右走至无法走为止
predecessor = root->left;
while (predecessor->right != nullptr && predecessor->right != root) {
predecessor = predecessor->right;
}
// 让 predecessor 的右指针指向 root,继续遍历左子树
if (predecessor->right == nullptr) {
predecessor->right = root;
root = root->left;
}
// 说明左子树已经访问完了,我们需要断开链接
else {
if (pred != nullptr && root->val < pred->val) {
y = root;
if (x == nullptr) {
x = pred;
}
}
pred = root;
predecessor->right = nullptr;
root = root->right;
}
}
// 如果没有左孩子,则直接访问右孩子
else {
if (pred != nullptr && root->val < pred->val) {
y = root;
if (x == nullptr) {
x = pred;
}
}
pred = root;
root = root->right;
}
}
swap(x->val, y->val);
}
};