124 Binary Tree Maximum Path Sum

本文深入探讨了寻找二叉树中最大路径和的算法实现,通过递归方式计算以每个节点为根的最大路径和,最终找到全局最大值。文章提供了详细的代码示例,帮助读者理解算法设计思路。

1 题目

Given a non-empty binary tree, find the maximum path sum.

For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path must contain at least one node and does not need to go through the root.

Example 1:

Input: [1,2,3]

       1
      / \
     2   3

Output: 6

Example 2:

Input: [-10,9,20,null,null,15,7]

   -10
   / \
  9  20
    /  \
   15   7

Output: 42

2 尝试解

2.1 分析

给定一个二叉树,问最大路径和。

以当前节点为根节点且经过根节点的最大路径和为局部最大路径和。从叶节点开始,节点15和7的局部最大路径分别为15和7;上升到节点20,局部最大路径为42(20+15+7);上升到节点-10,局部最大路径为34(-10+9+35)。

所以局部最大路径和tmp = max(root,root+left,root+right,root+left+right),用此更新结果result。其中left和right分别表示以左子节点和右子节点为路径一端的最大路径和。显然tmp并不能作为当前节点的返回值传递给其父节点,因为root+left+right的路径不能在root处分叉连结其父节点,只能返回max(root,root+left,root+right)。

所以在递归调用函数时,函数内部计算局部最大路径和,函数返回值是以根节点为一端的最大路径和。即

tmp = max(root,root+left,root+right,root+left+right) → result = max(result,tmp)

return max(root,root+left,root+right)

2.2 代码

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    int help(TreeNode* root, int&result){
        if(!root) return 0;
        int left = help(root->left,result);
        int right = help(root->right,result);
        int tmp = max(root->val,max(root->val+left,root->val+right));
        result = max(result,max(tmp,root->val+left+right));
        return tmp;
    }
    int maxPathSum(TreeNode* root) {
        int result = INT_MIN;
        help(root,result);
        return result;
    }
};

3 标准解

class Solution {
    int maxToRoot(TreeNode *root, int &re) {
        if (!root) return 0;
        int l = maxToRoot(root->left, re);
        int r = maxToRoot(root->right, re);
        if (l < 0) l = 0;
        if (r < 0) r = 0;
        if (l + r + root->val > re) re = l + r + root->val;
        return root->val += max(l, r);
    }
public:
    int maxPathSum(TreeNode *root) {
        int max = -2147483648;
        maxToRoot(root, max);
        return max;
    }
};

 

同步定位与地图构建(SLAM)技术为移动机器人或自主载具在未知空间中的导航提供了核心支撑。借助该技术,机器人能够在探索过程中实时构建环境地图并确定自身位置。典型的SLAM流程涵盖传感器数据采集、数据处理、状态估计及地图生成等环节,其核心挑战在于有效处理定位与环境建模中的各类不确定性。 Matlab作为工程计算与数据可视化领域广泛应用的数学软件,具备丰富的内置函数与专用工具箱,尤其适用于算法开发与仿真验证。在SLAM研究方面,Matlab可用于模拟传感器输出、实现定位建图算法,并进行系统性能评估。其仿真环境能显著降低实验成本,加速算法开发与验证周期。 本次“SLAM-基于Matlab的同步定位与建图仿真实践项目”通过Matlab平台完整再现了SLAM的关键流程,包括数据采集、滤波估计、特征提取、数据关联与地图更新等核心模块。该项目不仅呈现了SLAM技术的实际应用场景,更为机器人导航与自主移动领域的研究人员提供了系统的实践参考。 项目涉及的核心技术要点主要包括:传感器模型(如激光雷达与视觉传感器)的建立与应用、特征匹配与数据关联方法、滤波器设计(如扩展卡尔曼滤波与粒子滤波)、图优化框架(如GTSAM与Ceres Solver)以及路径规划与避障策略。通过项目实践,参与者可深入掌握SLAM算法的实现原理,并提升相关算法的设计与调试能力。 该项目同时注重理论向工程实践的转化,为机器人技术领域的学习者提供了宝贵的实操经验。Matlab仿真环境将复杂的技术问题可视化与可操作化,显著降低了学习门槛,提升了学习效率与质量。 实践过程中,学习者将直面SLAM技术在实际应用中遇到的典型问题,包括传感器误差补偿、动态环境下的建图定位挑战以及计算资源优化等。这些问题的解决对推动SLAM技术的产业化应用具有重要价值。 SLAM技术在工业自动化、服务机器人、自动驾驶及无人机等领域的应用前景广阔。掌握该项技术不仅有助于提升个人专业能力,也为相关行业的技术发展提供了重要支撑。随着技术进步与应用场景的持续拓展,SLAM技术的重要性将日益凸显。 本实践项目作为综合性学习资源,为机器人技术领域的专业人员提供了深入研习SLAM技术的实践平台。通过Matlab这一高效工具,参与者能够直观理解SLAM的实现过程,掌握关键算法,并将理论知识系统应用于实际工程问题的解决之中。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
这段代码是一个经典的 **二叉树中的最大路径和**(LeetCode 第124题)的解法,使用了 **DFS(深度优先搜索) + 动态规划思想**。 你提供的代码使用了 C++14 以后的特性,如 **lambda 表达式递归(`this auto&& dfs`)** 和 **立即调用 lambda** 的方式来实现递归 DFS。这种写法在 LeetCode 等 OJ 平台上非常常见,但如果你希望在 **Visual Studio(VS)等标准编译器下编译运行**,这段代码 **可能无法通过编译**,因为 `this auto&& dfs` 这种写法不是标准 C++,而是某些编译器的扩展(比如 GCC 支持,但 MSVC 不支持)。 --- ### ✅ VS 兼容的完整版本(标准 C++17 写法) 下面是可以在 Visual Studio 上正常编译运行的完整版本: ```cpp #include <iostream> #include <algorithm> #include <climits> using namespace std; // Definition for a binary tree node. struct TreeNode { int val; TreeNode *left; TreeNode *right; TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} }; class Solution { public: int maxPathSum(TreeNode* root) { int ans = INT_MIN; dfs(root, ans); return ans; } private: // 返回以当前节点为结尾的最大路径链和 int dfs(TreeNode* node, int& ans) { if (!node) return 0; // 递归左右子树 int left_gain = max(dfs(node->left, ans), 0); // 只取正值 int right_gain = max(dfs(node->right, ans), 0); // 当前节点作为最高点,计算路径和 int current_path_sum = left_gain + right_gain + node->val; ans = max(ans, current_path_sum); // 返回当前节点的最大链和(只能选一边) return max(left_gain + node->val, right_gain + node->val); } }; ``` --- ### ✅ 示例 main 函数(用于测试) ```cpp int main() { // 构造一个测试二叉树: // 1 // / \ // 2 3 TreeNode* root = new TreeNode(1); root->left = new TreeNode(2); root->right = new TreeNode(3); Solution sol; cout << "Maximum Path Sum: " << sol.maxPathSum(root) << endl; // 输出 6 // 清理内存 delete root->left; delete root->right; delete root; return 0; } ``` --- ### ✅ VS 编译注意事项: - **不支持 `this auto&& dfs` 写法**(这是 GCC 的扩展)。 - 使用标准的类成员函数或普通函数来递归是兼容性更好的方式。 - 使用 `std::function` 也可以实现递归 lambda,但效率略低。 --- ### ✅ 使用 `std::function` 的版本(兼容性较好) ```cpp #include <functional> int maxPathSum(TreeNode* root) { int ans = INT_MIN; function<int(TreeNode*)> dfs = [&](TreeNode* node) { if (!node) return 0; int l = max(dfs(node->left), 0); int r = max(dfs(node->right), 0); ans = max(ans, l + r + node->val); return max(l, r) + node->val; }; dfs(root); return ans; } ``` --- ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值