124. Binary Tree Maximum Path Sum

本文探讨了在非空二叉树中寻找最大路径和的问题,通过递归算法结合贪心策略实现,无需路径一定经过根节点。文章详细解释了算法思路及其实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

Given a non-empty binary tree, find the maximum path sum.

For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path must contain at least one node and does not need to go through the root.

Example 1:

Input: [1,2,3]

   1
  / \
 2   3

Output: 6
Example 2:

Input: [-10,9,20,null,null,15,7]

-10
/
9 20
/
15 7

Output: 42

Problem URL


Solution

给一棵非空二叉树,找到一条拥有最大加和的路径,并返回它的和。路径不一定要经过root。

We could use recursion to solve this proble. Using a global variable to store the max path sum. Then from the root node, we start recursion, for a node in the tree, if it is null, return 0; Or calculate the maxpath from it left child and right child, If the value is smaller than 0, we just discard it. Calculating new max path value. And return the biggst one from its left and right plus the value of this node for upper level recursion.

Code
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    int maxValue = Integer.MIN_VALUE;
    public int maxPathSum(TreeNode root) {
        maxPathHelper(root);
        return maxValue;
    }
    
    private int maxPathHelper(TreeNode node){
        if (node == null){
            return 0;
        }
        
        int left = Math.max(0, maxPathHelper(node.left));
        int right = Math.max(0, maxPathHelper(node.right));
        maxValue = Math.max(maxValue, left + right + node.val);
        return node.val + Math.max(left, right);
    }
}

Time Complexity: unknow
Space Complexity: unknow


Review

带贪心的递归。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值