import org.apache.kafka.common.serialization.StringDeserializer import org.apache.spark.streaming.{Seconds, StreamingContext} import org.apache.spark.SparkConf import org.apache.spark.streaming.kafka010._ import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe import org.apache.spark.sql.SparkSession object KafkaTest extends Serializable { def main(args: Array[String]): Unit = { val conf = new SparkConf(); conf.setMaster("local") conf.setAppName("wangjk") conf.set("spark.testing.memory", "2147480000") val ssc = new StreamingContext(conf, Seconds.apply(5)) val sess = SparkSession.builder().config(conf).getOrCreate val kafkaParams = Map[String, Object]( "bootstrap.servers" -> "datatwo:9092,datathree:9092,datafour:9092",// kafka 集群 "key.deserializer" -> classOf[StringDeserializer], "value.deserializer" -> classOf[StringDeserializer], "group.id" -> "dsffaa", "auto.offset.reset" -> "earliest", // 每次都是从头开始消费(from-beginning),可配置其他消费方式 "enable.auto.commit" -> (false: java.lang.Boolean) ) val topics = Array("air") //主题,可配置多个 val stream = KafkaUtils.createDirectStream[String, String]( ssc, PreferConsistent, Subscribe[String, String](topics, kafkaParams) ) val rd2=stream.map(e=>(e.value())) //e.value() 是kafka消息内容,e.key为空值 rd2.print() ssc.start() ssc.awaitTermination() } }
SparkStream读取Kafka消息
最新推荐文章于 2025-05-21 15:52:24 发布