Java实现 SparkStreaming读取Kafka数据,并且单词累加计数

本文详细介绍了如何使用Java实现SparkStreaming从Kafka读取数据,并实现单词累加计数功能。通过创建简单的Kafka生产者发送数据,然后利用SparkStreaming的updateStateByKey方法进行数据处理,区别于常见的ReduceByKey操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

网络上大部分文章都没有做到真正的单词累加计数,终于研究完以后成功实现

简单的Kafka生产者

package com.zwj.utils;

import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.storage.StorageLevel;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaPairReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka.KafkaUtils;
import scala.Tuple2;

import java.util.*;

public c
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值