标牌工作手册

本文介绍了一种交通标志数据集的标注方法及基于YOLOv4的模型训练流程,包括数据预处理步骤、模型配置文件调整、训练与测试指令等关键信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、数据集

(一)分类

  1. 00最大限速牌,000005到000140:最大限速5到最大限速140
  2. 01结束最大限速牌,010005到010140:结束最大限速5到结束最大限速140
  3. 02最大轴重牌,020020:最大轴重2t
  4. 03限重,030010:限重1t
  5. 04限高,040010:限高1m
  6. 05限宽,050010:限宽1m
  7. 06最小限速,060005:最小限速5
  8. 07禁止标牌,070004:禁止三轮车
  9. 08信息指示牌,080004:机动车左转
  10. 09警告牌,094003:注意儿童
  11. 0A彩色标牌,0A0001:龙门架方形大牌子蓝色
  12. 0B可变标牌,0B0005:可变标牌5
  13. 0C诱导标志,0C0001:诱导标志

标注的文档更新在这里:
https://10.60.158.228:8443/svn/PCM-ProjectConfigurationManagement/04 Department Library(部门库)/03 Map Product Center(地图产品中心)/07 Ark Project Department(方舟项目部)/05 Projects(项目资料)/2021年/样本标注/Sprint3
在这里插入图片描述

(二)工作空间的notebook

HAD-slp6562
navinfo

(三)数据预处理

1、用VSCode自带的python编译器,执行step2_json2xml.py,会报错误UnicodeEncodeError

解决办法:用notebook里的python编译器

2、直接从AI平台挂载的数据集,普遍存在图像后缀名为JPG的

解决办法:取消注释step2_json2xml.py中重命名部分代码

3、构建数据集时没有选择过滤,有可能出现KeyError: 'w’的报错

原因是,报错的json文件中,存在没有“w” key的分割要素。
解决办法:1、构建数据集时,选择过滤
2、修改/opt/conda/lib/python3.6/site-packages/aicloud/json_to_voc.py代码,修改部分的代码如下:
在这里插入图片描述

4、step4_xml2txt.py和交通灯不同,修改如下:
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join

sets=[('2007', 'train'), ('2007', 'val'), ('2007', 'test')]

classes = ["00","01","02","03","04","05","06","07","08","09","0A","0B","0C"]

def convert(size, box):
    dw = 1./(size[0])
    dh = 1./(size[1])
    x = (box[0] + box[1])/2.0 - 1
    y = (box[2] + box[3])/2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x*dw
    w = w*dw
    y = y*dh
    h = h*dh
    return (x,y,w,h)

def convert_annotation(year, image_id):
    if os.path.exists('/root/data_sign/sign_test/VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id)):
        in_file = open('/root/data_sign/sign_test/VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id))
        out_file = open('/root/data_sign/sign_test/VOCdevkit/VOC%s/labels/%s.txt'%(year, image_id), 'w')
        tree=ET.parse(in_file)
        root = tree.getroot()
        size = root.find('size')
        w = int(size.find('width').text)
        h = int(size.find('height').text)

        for obj in root.iter('object'):
            difficult = obj.find('difficult').text
            cls = obj.find('name').text
            if cls in classes:
                cls_id = classes.index(cls)
            else:
                continue
            xmlbox = obj.find('bndbox')
            b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
            bb = convert((w,h), b)
            out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')

wd = getcwd()

for year, image_set in sets:
    if not os.path.exists('/root/data_sign/sign_test/VOCdevkit/VOC%s/labels/'%(year)):
        os.makedirs('/root/data_sign/sign_test/VOCdevkit/VOC%s/labels/'%(year))
    image_ids = open('/root/data_sign/sign_test/VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()
    list_file = open('/root/data_sign/sign_test/VOCdevkit/%s_%s.txt'%(year, image_set), 'w')
    i = 0
    for image_id in image_ids:
        i = i+1
        # convert_annotation(year, image_id)
        # print(i,"sucessfully")
        list_file.write('/root/data_sign/sign_test/VOCdevkit/VOC2007/JPEGImages/%s.jpg\n'%(image_id))
        
    list_file.close()

os.system("cat /root/data_sign/sign_test/VOCdevkit/2007_train.txt /root/data_sign/sign_test/VOCdevkit/2007_val.txt /root/data_sign/sign_test/VOCdevkit/2007_test.txt > /root/data_sign/sign_test/VOCdevkit/train_all.txt")

(四)模型训练

1、crop.names的修改

2、crop.data的修改

3、crop.cfg的修改

3.1 修改anchor
./darknet detector calc_anchors crop/crop.data -num_of_clusters 9 -width 800 -height 800

3.2 修改类别

同时修改filters和class,filters = 3 * (class+5),有三处

4、开始训练

./darknet detector train crop/crop.data crop/crop.cfg backup/yolov4.conv.137 -gpus 0,1 -dont_show -mjpeg_port 8092 -map
./darknet detector train crop/crop.data crop/crop.cfg backup/yolov4.conv.137 -gpus 0 -dont_show -mjpeg_port 8092 -map
./darknet detector train /root/work/darknet/cfg/NI.data /root/work/darknet/cfg/yolov4-ni.cfg backup/yolov4.conv.137 -gpus 0 -dont_show -mjpeg_port 8092 -map

./darknet detector train crop/crop.data crop/crop.cfg backup/yolov4-ni_best.weights -gpu 0 -dont_show -mjpeg_port 8092 -map -clear

5、测试

按照比例缩放(留白缩放)的推理代码:

./darknet detector test /root/work/darknet/cfg/NI.data /root/work/darknet/cfg/yolov4-ni.cfg /root/work/darknet/backup/yolov4-ni_best.weights  -letter_box -ext_output  -dont_show -out /root/work/result.json < /root/work/cp_test.txt 
./darknet detector map /root/work/darknet/cfg/NI.data /root/work/darknet/cfg/yolov4-ni.cfg /root/work/darknet/backup/yolov4-ni_best.weights  -iou_thresh 0.5 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值