一、数据集
(一)分类
- 00最大限速牌,000005到000140:最大限速5到最大限速140
- 01结束最大限速牌,010005到010140:结束最大限速5到结束最大限速140
- 02最大轴重牌,020020:最大轴重2t
- 03限重,030010:限重1t
- 04限高,040010:限高1m
- 05限宽,050010:限宽1m
- 06最小限速,060005:最小限速5
- 07禁止标牌,070004:禁止三轮车
- 08信息指示牌,080004:机动车左转
- 09警告牌,094003:注意儿童
- 0A彩色标牌,0A0001:龙门架方形大牌子蓝色
- 0B可变标牌,0B0005:可变标牌5
- 0C诱导标志,0C0001:诱导标志
标注的文档更新在这里:
https://10.60.158.228:8443/svn/PCM-ProjectConfigurationManagement/04 Department Library(部门库)/03 Map Product Center(地图产品中心)/07 Ark Project Department(方舟项目部)/05 Projects(项目资料)/2021年/样本标注/Sprint3
(二)工作空间的notebook
HAD-slp6562
navinfo
(三)数据预处理
1、用VSCode自带的python编译器,执行step2_json2xml.py,会报错误UnicodeEncodeError
解决办法:用notebook里的python编译器
2、直接从AI平台挂载的数据集,普遍存在图像后缀名为JPG的
解决办法:取消注释step2_json2xml.py中重命名部分代码
3、构建数据集时没有选择过滤,有可能出现KeyError: 'w’的报错
原因是,报错的json文件中,存在没有“w” key的分割要素。
解决办法:1、构建数据集时,选择过滤
2、修改/opt/conda/lib/python3.6/site-packages/aicloud/json_to_voc.py代码,修改部分的代码如下:
4、step4_xml2txt.py和交通灯不同,修改如下:
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
sets=[('2007', 'train'), ('2007', 'val'), ('2007', 'test')]
classes = ["00","01","02","03","04","05","06","07","08","09","0A","0B","0C"]
def convert(size, box):
dw = 1./(size[0])
dh = 1./(size[1])
x = (box[0] + box[1])/2.0 - 1
y = (box[2] + box[3])/2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return (x,y,w,h)
def convert_annotation(year, image_id):
if os.path.exists('/root/data_sign/sign_test/VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id)):
in_file = open('/root/data_sign/sign_test/VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id))
out_file = open('/root/data_sign/sign_test/VOCdevkit/VOC%s/labels/%s.txt'%(year, image_id), 'w')
tree=ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls in classes:
cls_id = classes.index(cls)
else:
continue
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
bb = convert((w,h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
for year, image_set in sets:
if not os.path.exists('/root/data_sign/sign_test/VOCdevkit/VOC%s/labels/'%(year)):
os.makedirs('/root/data_sign/sign_test/VOCdevkit/VOC%s/labels/'%(year))
image_ids = open('/root/data_sign/sign_test/VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()
list_file = open('/root/data_sign/sign_test/VOCdevkit/%s_%s.txt'%(year, image_set), 'w')
i = 0
for image_id in image_ids:
i = i+1
# convert_annotation(year, image_id)
# print(i,"sucessfully")
list_file.write('/root/data_sign/sign_test/VOCdevkit/VOC2007/JPEGImages/%s.jpg\n'%(image_id))
list_file.close()
os.system("cat /root/data_sign/sign_test/VOCdevkit/2007_train.txt /root/data_sign/sign_test/VOCdevkit/2007_val.txt /root/data_sign/sign_test/VOCdevkit/2007_test.txt > /root/data_sign/sign_test/VOCdevkit/train_all.txt")
(四)模型训练
1、crop.names的修改
2、crop.data的修改
3、crop.cfg的修改
3.1 修改anchor
./darknet detector calc_anchors crop/crop.data -num_of_clusters 9 -width 800 -height 800
3.2 修改类别
同时修改filters和class,filters = 3 * (class+5),有三处
4、开始训练
./darknet detector train crop/crop.data crop/crop.cfg backup/yolov4.conv.137 -gpus 0,1 -dont_show -mjpeg_port 8092 -map
./darknet detector train crop/crop.data crop/crop.cfg backup/yolov4.conv.137 -gpus 0 -dont_show -mjpeg_port 8092 -map
./darknet detector train /root/work/darknet/cfg/NI.data /root/work/darknet/cfg/yolov4-ni.cfg backup/yolov4.conv.137 -gpus 0 -dont_show -mjpeg_port 8092 -map
./darknet detector train crop/crop.data crop/crop.cfg backup/yolov4-ni_best.weights -gpu 0 -dont_show -mjpeg_port 8092 -map -clear
5、测试
按照比例缩放(留白缩放)的推理代码:
./darknet detector test /root/work/darknet/cfg/NI.data /root/work/darknet/cfg/yolov4-ni.cfg /root/work/darknet/backup/yolov4-ni_best.weights -letter_box -ext_output -dont_show -out /root/work/result.json < /root/work/cp_test.txt
./darknet detector map /root/work/darknet/cfg/NI.data /root/work/darknet/cfg/yolov4-ni.cfg /root/work/darknet/backup/yolov4-ni_best.weights -iou_thresh 0.5