描述:
略(图太多懒得复制)
思路来自https://blog.youkuaiyun.com/qq_40774175/article/details/82704582
那个截图分析的很细致啊。
#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
const int INF = 1e7;
int d[15][9][9][9][9],sum[9][9][9][9];
int num[9][9];
int dp(int n,int x1,int y1,int x2,int y2){//k次分割得到的最小平方和
int i,j;
int& ans = d[n][x1][y1][x2][y2];
if(ans >= 0)
return ans;
ans = INF;
for(i = x1;i < x2; ++i){
ans = min(ans,min(dp(n - 1,x1,y1,i,y2) + d[1][i + 1][y1][x2][y2],dp(n - 1,i + 1,y1,x2,y2) + d[1][x1][y1][i][y2]));
}
for(i = y1;i < y2; ++i){
ans = min(ans,min(dp(n - 1,x1,y1,x2,i) + d[1][x1][i + 1][x2][y2],dp(n - 1,x1,i + 1,x2,y2) + d[1][x1][y1][x2][i]));
}
return ans;
}
int main(){
int n,x1,y1,x2,y2;
scanf("%d",&n);
for(x1 = 1;x1 <= 8; ++x1){
for(y1 = 1;y1 <= 8; ++y1){
scanf("%d",&num[x1][y1]);
}
}
memset(sum,0,sizeof(sum));
memset(d,-1,sizeof(d));
for(x1 = 1;x1 <= 8; ++x1){
for(y1 = 1;y1 <= 8; ++y1){
for(x2 = x1;x2 <= 8; ++x2){
for(y2 = y1;y2 <= 8; ++y2){
sum[x1][y1][x2][y2] = sum[x1][y1][x2][y2 - 1] + sum[x1][y1][x2 - 1][y2] - sum[x1][y1][x2 - 1][y2 - 1] + num[x2][y2];
d[1][x1][y1][x2][y2] = sum[x1][y1][x2][y2] * sum[x1][y1][x2][y2];
}
}
}
}
printf("%.3f\n",sqrt(((double)dp(n,1,1,8,8) - ((double)d[1][1][1][8][8] / n)) / n));
return 0;
}
难点一:均方差公式化简 求的就是平方和
难点二:如何确定状态转移方程?不知道orz,这题当做例题还不错。