常遗忘的函数,f.reduce_sum,np.argsort ,np.concatenate,np.argmax,

本文详细介绍了TensorFlow中的tf.reduce_sum函数,包括不同维度下的求和操作,以及tf.reduce_mean在降维和计算平均值中的应用。接着探讨了NumPy的argsorts函数,展示了如何按行或列对矩阵进行排序并获取排序后的索引。此外,还解释了np.concatenate在矩阵拼接中的用法,包括按行和按列拼接。最后,通过实例讲解了np.argmax函数如何找到数组中最大值的索引位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1)

其中,tf.reduce_sum用法如下:

# 'x' is [[1, 1, 1]

#         [[1, 1, 1]]

#求和

tf.reduce_sum(x) ==> 6

#按列求和

tf.reduce_sum(x, 0) ==> [2, 2, 2]

#按行求和

tf.reduce_sum(x, 1) ==> [3, 3]

#按照行的维度求和

tf.reduce_sum(x, 1, keep_dims=True) ==> [[3], [3]]

#行列求和

tf.reduce_sum(x, [0, 1]) ==> 6
 

其中,tf.reduce_mean 函数用于计算张量tensor沿着指定的数轴(tensor的某一维度)上的的平均值,主要用作降维或者计算tensor(图像)的平均值。

 

tf实现if 语句:

 

2)

numpy.argsort(a, axis=-1, kind=’quicksort’, order=None) 
功能: 将矩阵a按照axis排序,并返回排序后的下标 
参数: a:输入矩阵, axis:需要排序的维度 
返回值: 输出排序后的下标

>>> x = np.array([3, 1, 2])
>>> np.argsort(x)
array([1, 2, 0])

等同于 从小到大排序:[1,2,3]   其对应索引为:[1,2,0]

 

>>> x = np.array([[1, 5, 7], [3, 2, 4]])
>>> np.argsort(x, axis=0)
array([[0, 1, 1],
       [1, 0, 0]])            #列元素进行排序

等同于,按列排序:[[1,2,4][3,5,7]]  其对应索引为:[[0,1,1][1,0,0]]


>>> np.argsort(x, axis=1)
array([[0, 1, 2],
       [1, 0, 2]])             #行元素进行排序

等同于,按行排序 : [[1,5,7][2,3,4]]   其对应索引为:[[0,1,2][1,0,2]]

 

 

3)

np.concatenate  :拼接函数

 

a = np.array([[1, 2], [3, 4]])

b = np.array([[5, 6]])

In [25]: np.concatenate((a, b), axis=0)   #按列拼接(拼接在每列的后面)

Out[25]: array([[1, 2], [3, 4], [5, 6]])

In [28]: np.concatenate((a,b.T),axis = 1)   #按行拼接(拼接在每行后面)

Out[28]: array([[1, 2, 5], [3, 4, 6]])

 

4)

  1. import numpy as np

  2. a = np.array([3, 1, 2, 4, 6, 1])

  3. b=np.argmax(a)#取出a中元素最大值所对应的索引,此时最大值位6,其对应的位置索引值为4,(索引值默认从0开始)

  4. print(b) #4

def train_model(self): """训练PINNs模型(带早停机制+训练指标监控)""" if self.train_df is None: messagebox.showwarning("警告", "请先选择训练集文件") return try: self.status_var.set("正在预处理数据...") self.root.update() # 从训练集中切分训练子集和验证子集(时间顺序切分) split_ratio = 1 - self.split_ratio_var.get() split_idx = int(len(self.train_df) * split_ratio) train_subset = self.train_df.iloc[:split_idx] valid_subset = self.train_df.iloc[split_idx:] # 检查数据量是否足够 if len(train_subset) < 2 or len(valid_subset) < 2: messagebox.showerror("数据错误", "训练集数据量不足(至少需要2个时间步)") return # ===== 新增:创建特征归一化器 ===== self.scaler_lag1 = MinMaxScaler(feature_range=(0, 1)) self.scaler_lag3 = MinMaxScaler(feature_range=(0, 1)) self.scaler_lag7 = MinMaxScaler(feature_range=(0, 1)) self.scaler_month = MinMaxScaler(feature_range=(0, 1)) self.scaler_season = MinMaxScaler(feature_range=(0, 1)) # 数据预处理 - 分别归一化不同特征 # 时间特征 t_train = train_subset['days'].values[1:].reshape(-1, 1) self.scaler_t.fit(t_train) t_train_scaled = self.scaler_t.transform(t_train).astype(np.float32) # 水位特征 h_train = train_subset['水位'].values[:-1].reshape(-1, 1) self.scaler_h.fit(h_train) h_train_scaled = self.scaler_h.transform(h_train).astype(np.float32) # 时间步长特征 dt_train = train_subset['dt'].values[1:].reshape(-1, 1) self.scaler_dt.fit(dt_train) dt_train_scaled = self.scaler_dt.transform(dt_train).astype(np.float32) # ===== 新增:归一化滞后特征 ===== lag1_train = train_subset['水位_lag1'].values[:-1].reshape(-1, 1) self.scaler_lag1.fit(lag1_train) lag1_train_scaled = self.scaler_lag1.transform(lag1_train).astype(np.float32) lag3_train = train_subset['水位_lag3'].values[:-1].reshape(-1, 1) self.scaler_lag3.fit(lag3_train) lag3_train_scaled = self.scaler_lag3.transform(lag3_train).astype(np.float32) lag7_train = train_subset['水位_lag7'].values[:-1].reshape(-1, 1) self.scaler_lag7.fit(lag7_train) lag7_train_scaled = self.scaler_lag7.transform(lag7_train).astype(np.float32) # ===== 新增:归一化周期性特征 ===== month_sin_train = train_subset['month_sin'].values[:-1].reshape(-1, 1) month_cos_train = train_subset['month_cos'].values[:-1].reshape(-1, 1) month_features_train = np.hstack([month_sin_train, month_cos_train]) self.scaler_month.fit(month_features_train) month_features_train_scaled = self.scaler_month.transform(month_features_train).astype(np.float32) season_sin_train = train_subset['season_sin'].values[:-1].reshape(-1, 1) season_cos_train = train_subset['season_cos'].values[:-1].reshape(-1, 1) season_features_train = np.hstack([season_sin_train, season_cos_train]) self.scaler_season.fit(season_features_train) season_features_train_scaled = self.scaler_season.transform(season_features_train).astype(np.float32) # 归一化标签(下一时刻水位) h_next_train = train_subset['水位'].values[1:].reshape(-1, 1) h_next_train_scaled = self.scaler_h.transform(h_next_train).astype(np.float32) # 准备验证数据(同样进行归一化) t_valid = valid_subset['days'].values[1:].reshape(-1, 1) t_valid_scaled = self.scaler_t.transform(t_valid).astype(np.float32) h_valid = valid_subset['水位'].values[:-1].reshape(-1, 1) h_valid_scaled = self.scaler_h.transform(h_valid).astype(np.float32) dt_valid = valid_subset['dt'].values[1:].reshape(-1, 1) dt_valid_scaled = self.scaler_dt.transform(dt_valid).astype(np.float32) h_next_valid_scaled = self.scaler_h.transform( valid_subset['水位'].values[1:].reshape(-1, 1) ).astype(np.float32) # 原始值用于指标计算 h_next_train_true = h_next_train h_next_valid_true = valid_subset['水位'].values[1:].reshape(-1, 1) # 创建模型和优化器 self.model = PINNModel( num_layers=self.num_layers_var.get(), hidden_units=self.hidden_units_var.get() ) # 创建动态学习率调度器 initial_lr = 0.001 lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay( initial_learning_rate=initial_lr, decay_steps=100, # 每100步衰减一次 decay_rate=0.95, # 衰减率 staircase=True # 阶梯式衰减 ) optimizer = Adam(learning_rate=lr_schedule) # ===== 新增:验证集的滞后特征归一化 ===== lag1_valid = valid_subset['水位_lag1'].values[:-1].reshape(-1, 1) lag1_valid_scaled = self.scaler_lag1.transform(lag1_valid).astype(np.float32) lag3_valid = valid_subset['水位_lag3'].values[:-1].reshape(-1, 1) lag3_valid_scaled = self.scaler_lag3.transform(lag3_valid).astype(np.float32) lag7_valid = valid_subset['水位_lag7'].values[:-1].reshape(-1, 1) lag7_valid_scaled = self.scaler_lag7.transform(lag7_valid).astype(np.float32) # ===== 新增:验证集的周期性特征归一化 ===== month_sin_valid = valid_subset['month_sin'].values[:-1].reshape(-1, 1) month_cos_valid = valid_subset['month_cos'].values[:-1].reshape(-1, 1) month_features_valid = np.hstack([month_sin_valid, month_cos_valid]) month_features_valid_scaled = self.scaler_month.transform(month_features_valid).astype(np.float32) season_sin_valid = valid_subset['season_sin'].values[:-1].reshape(-1, 1) season_cos_valid = valid_subset['season_cos'].values[:-1].reshape(-1, 1) season_features_valid = np.hstack([season_sin_valid, season_cos_valid]) season_features_valid_scaled = self.scaler_season.transform(season_features_valid).astype(np.float32) # 在训练循环中,使用归一化后的数据 train_dataset = tf.data.Dataset.from_tensor_slices( ((t_train_scaled, h_train_scaled, dt_train_scaled, lag1_train_scaled, lag3_train_scaled, lag7_train_scaled, month_features_train_scaled, season_features_train_scaled), h_next_train_scaled) ) train_dataset = train_dataset.shuffle(buffer_size=1024).batch(32) valid_dataset = tf.data.Dataset.from_tensor_slices( ((t_valid_scaled, h_valid_scaled, dt_valid_scaled, lag1_valid_scaled, lag3_valid_scaled, lag7_valid_scaled, month_features_valid_scaled, season_features_valid_scaled), h_next_valid_scaled) ) valid_dataset = valid_dataset.batch(32) # 初始化训练历史记录列表 train_data_loss_history = [] physics_loss_history = [] valid_data_loss_history = [] train_metrics_history = [] valid_metrics_history = [] # 早停机制参数 patience = int(self.epochs_var.get() / 3) min_delta = 1e-4 best_valid_loss = float('inf') wait = 0 best_epoch = 0 best_weights = None start_time = time.time() # 自定义训练循环 for epoch in range(self.epochs_var.get()): # 获取当前学习率 current_lr = optimizer.learning_rate.numpy() # 训练阶段 epoch_train_data_loss = [] epoch_physics_loss = [] train_pred_scaled = [] # 修改后的解包方式 # 在训练循环中: for step, (inputs, h_next_batch) in enumerate(train_dataset): t_batch, h_batch, dt_batch, lag1_batch, lag3_batch, lag7_batch, month_feats_batch, season_feats_batch = inputs with tf.GradientTape() as tape: # 预测下一时刻水位 h_pred = self.model([ t_batch, h_batch, dt_batch, lag1_batch, lag3_batch, lag7_batch, month_feats_batch, season_feats_batch ], training=True) data_loss = tf.reduce_mean(tf.square(h_next_batch - h_pred)) # 计算物理损失 physics_loss = self.model.physics_loss(t_batch, h_batch, dt_batch, training=True) # 使用设置的物理损失权重 current_physics_weight = self.physics_weight_var.get() # 添加L2正则化损失 l2_loss = tf.reduce_sum(self.model.losses) # 总损失 loss = data_loss + current_physics_weight * physics_loss + l2_loss grads = tape.gradient(loss, self.model.trainable_variables) optimizer.apply_gradients(zip(grads, self.model.trainable_variables)) epoch_train_data_loss.append(data_loss.numpy()) epoch_physics_loss.append(physics_loss.numpy()) train_pred_scaled.append(h_pred.numpy()) # 合并训练预测值 train_pred_scaled = np.concatenate(train_pred_scaled, axis=0) train_pred_true = self.scaler_h.inverse_transform(train_pred_scaled) train_metrics = self.calculate_metrics( y_true=h_next_train_true.flatten(), y_pred=train_pred_true.flatten() ) train_metrics_history.append(train_metrics) # 验证阶段 epoch_valid_data_loss = [] valid_pred_scaled = [] for (inputs, h_v_next_batch) in valid_dataset: t_v_batch, h_v_batch, dt_v_batch, lag1_v_batch, lag3_v_batch, lag7_v_batch, month_feats_v_batch, season_feats_v_batch = inputs h_v_pred = self.model([ t_v_batch, h_v_batch, dt_v_batch, lag1_v_batch, lag3_v_batch, lag7_v_batch, month_feats_v_batch, season_feats_v_batch ], training=False) valid_data_loss = tf.reduce_mean(tf.square(h_v_next_batch - h_v_pred)) epoch_valid_data_loss.append(valid_data_loss.numpy()) valid_pred_scaled.append(h_v_pred.numpy()) # 合并验证预测值(归一化后) valid_pred_scaled = np.concatenate(valid_pred_scaled, axis=0) # 反归一化得到原始预测值 valid_pred_true = self.scaler_h.inverse_transform(valid_pred_scaled) # 计算验证集指标(使用原始真实值和预测值) valid_metrics = self.calculate_metrics( y_true=h_next_valid_true.flatten(), y_pred=valid_pred_true.flatten() ) valid_metrics_history.append(valid_metrics) # 计算平均损失 avg_train_data_loss = np.mean(epoch_train_data_loss) avg_physics_loss = np.mean(epoch_physics_loss) avg_valid_data_loss = np.mean(epoch_valid_data_loss) # 记录损失 train_data_loss_history.append(avg_train_data_loss) physics_loss_history.append(avg_physics_loss) valid_data_loss_history.append(avg_valid_data_loss) # 早停机制逻辑 current_valid_loss = avg_valid_data_loss # 早停机制逻辑 current_valid_loss = avg_valid_data_loss if current_valid_loss < best_valid_loss - min_delta: best_valid_loss = current_valid_loss best_epoch = epoch + 1 wait = 0 best_weights = self.model.get_weights() else: wait += 1 if wait >= patience: self.status_var.set(f"触发早停!最佳轮次: {best_epoch},最佳验证损失: {best_valid_loss:.4f}") if best_weights is not None: self.model.set_weights(best_weights) break # 确保在此处退出循环 # 更新状态(添加当前学习率显示) if epoch % 1 == 0: # 提取当前训练/验证的关键指标 train_rmse = train_metrics['RMSE'] valid_rmse = valid_metrics['RMSE'] train_r2 = train_metrics['R2'] valid_r2 = valid_metrics['R2'] elapsed = time.time() - start_time self.status_var.set( f"训练中 | 轮次: {epoch + 1}/{self.epochs_var.get()} | " f"学习率: {current_lr:.6f} | " f"训练RMSE: {train_rmse:.4f} | 验证RMSE: {valid_rmse:.4f} | " f"训练R²: {train_r2:.4f} | 验证R²: {valid_r2:.4f} | " f"k1: {self.model.k1.numpy():.6f}, k2: {self.model.k2.numpy():.6f} | 时间: {elapsed:.1f}秒 | 早停等待: {wait}/{patience}" ) self.root.update() # 绘制损失曲线 self.loss_ax.clear() epochs_range = range(1, len(train_data_loss_history) + 1) self.loss_ax.plot(epochs_range, train_data_loss_history, 'b-', label='训练数据损失') self.loss_ax.plot(epochs_range, physics_loss_history, 'r--', label='物理损失') self.loss_ax.plot(epochs_range, valid_data_loss_history, 'g-.', label='验证数据损失') self.loss_ax.set_title('PINNs训练与验证损失') self.loss_ax.set_xlabel('轮次') self.loss_ax.set_ylabel('损失', rotation=0) self.loss_ax.legend() self.loss_ax.grid(True, alpha=0.3) self.loss_ax.set_yscale('log') self.loss_canvas.draw() # 训练完成提示 elapsed = time.time() - start_time if wait >= patience: completion_msg = ( f"早停触发 | 最佳轮次: {best_epoch} | 最佳验证损失: {best_valid_loss:.4f} | " f"最佳验证RMSE: {valid_metrics_history[best_epoch - 1]['RMSE']:.4f} | " f"总时间: {elapsed:.1f}秒" ) else: completion_msg = ( f"训练完成 | 总轮次: {self.epochs_var.get()} | " f"最终训练RMSE: {train_metrics_history[-1]['RMSE']:.4f} | " f"最终验证RMSE: {valid_metrics_history[-1]['RMSE']:.4f} | " f"最终训练R²: {train_metrics_history[-1]['R2']:.4f} | " f"最终验证R²: {valid_metrics_history[-1]['R2']:.4f} | " f"总时间: {elapsed:.1f}秒" ) # 保存训练历史 self.train_history = { 'train_data_loss': train_data_loss_history, 'physics_loss': physics_loss_history, 'valid_data_loss': valid_data_loss_history, 'train_metrics': train_metrics_history, 'valid_metrics': valid_metrics_history } # 保存学习到的物理参数 self.learned_params = { "k1": self.model.k1.numpy(), "k2": self.model.k2.numpy(), "alpha": self.model.alpha.numpy(), "beta": self.model.beta.numpy() } self.status_var.set(completion_msg) messagebox.showinfo("训练完成", f"PINNs模型训练成功完成!\n{completion_msg}") except Exception as e: messagebox.showerror("训练错误", f"模型训练失败:\n{str(e)}") self.status_var.set("训练失败") def predict(self): """使用PINNs模型进行递归预测(带Teacher Forcing和蒙特卡洛Dropout)""" if self.model is None: messagebox.showwarning("警告", "请先训练模型") return if self.test_df is None: messagebox.showwarning("警告", "请先选择测试集文件") return try: self.status_var.set("正在生成预测(使用Teacher Forcing和MC Dropout)...") self.root.update() # 预处理测试数据 - 归一化 t_test = self.test_df['days'].values.reshape(-1, 1) t_test_scaled = self.scaler_t.transform(t_test).astype(np.float32) dt_test = self.test_df['dt'].values.reshape(-1, 1) dt_test_scaled = self.scaler_dt.transform(dt_test).astype(np.float32) h_test = self.test_df['水位'].values.reshape(-1, 1) h_test_scaled = self.scaler_h.transform(h_test).astype(np.float32) # ===== 新增:归一化测试集的滞后特征 ===== lag1_test = self.test_df['水位_lag1'].values.reshape(-1, 1) lag1_test_scaled = self.scaler_lag1.transform(lag1_test).astype(np.float32) lag3_test = self.test_df['水位_lag3'].values.reshape(-1, 1) lag3_test_scaled = self.scaler_lag3.transform(lag3_test).astype(np.float32) lag7_test = self.test_df['水位_lag7'].values.reshape(-1, 1) lag7_test_scaled = self.scaler_lag7.transform(lag7_test).astype(np.float32) # ===== 新增:归一化测试集的周期性特征 ===== month_sin_test = self.test_df['month_sin'].values.reshape(-1, 1) month_cos_test = self.test_df['month_cos'].values.reshape(-1, 1) month_features_test = np.hstack([month_sin_test, month_cos_test]) month_features_test_scaled = self.scaler_month.transform(month_features_test).astype(np.float32) season_sin_test = self.test_df['season_sin'].values.reshape(-1, 1) season_cos_test = self.test_df['season_cos'].values.reshape(-1, 1) season_features_test = np.hstack([season_sin_test, season_cos_test]) season_features_test_scaled = self.scaler_season.transform(season_features_test).astype(np.float32) # 改进的递归预测参数 n = len(t_test) mc_iterations = 100 adaptive_forcing = True # 存储蒙特卡洛采样结果 mc_predictions_scaled = np.zeros((mc_iterations, n, 1), dtype=np.float32) # 进行多次蒙特卡洛采样 for mc_iter in range(mc_iterations): predicted_scaled = np.zeros((n, 1), dtype=np.float32) predicted_scaled[0] = h_test_scaled[0] # 第一个点使用真实值 # 递归预测(带自适应教师强制) for i in range(1, n): # 自适应教师强制:后期阶段增加真实值使用频率 if adaptive_forcing: # 前期70%概率使用真实值,后期提高到90% teacher_forcing_prob = 0.7 + 0.2 * min(1.0, i / (0.7 * n)) else: teacher_forcing_prob = 0.7 # 决定使用真实值还是预测值 use_actual = np.random.rand() < teacher_forcing_prob if use_actual and i < n - 1: # 不能使用未来值 h_prev = h_test_scaled[i - 1:i] else: h_prev = predicted_scaled[i - 1:i] t_prev = t_test_scaled[i - 1:i] dt_i = dt_test_scaled[i:i + 1] # 准备输入特征 inputs = ( t_test_scaled[i - 1:i], # 时间 h_prev, # 当前水位 dt_test_scaled[i:i + 1], # 时间步长 lag1_test_scaled[i - 1:i], lag3_test_scaled[i - 1:i], lag7_test_scaled[i - 1:i], month_features_test_scaled[i - 1:i], season_features_test_scaled[i - 1:i] ) # 直接传递整个输入元组 h_pred = self.model(inputs, training=True) # 物理模型预测值(用于约束) k1 = self.learned_params['k1'] k2 = self.learned_params['k2'] alpha = self.learned_params['alpha'] beta = self.learned_params['beta'] # 物理方程预测 exponent = - (k1 + k2 * h_prev) * dt_i decay_term = h_prev * np.exp(exponent) external_term = alpha * (1 - np.exp(-beta * dt_i)) physics_pred = decay_term + external_term # 混合预测:神经网络预测与物理模型预测加权平均 physics_weight = 0.3 # 物理模型权重 final_pred = physics_weight * physics_pred + (1 - physics_weight) * h_pred.numpy() predicted_scaled[i] = final_pred[0][0] mc_predictions_scaled[mc_iter] = predicted_scaled # 计算预测统计量 mean_pred_scaled = np.mean(mc_predictions_scaled, axis=0) std_pred_scaled = np.std(mc_predictions_scaled, axis=0) # 反归一化结果 predictions = self.scaler_h.inverse_transform(mean_pred_scaled) uncertainty = self.scaler_h.inverse_transform(std_pred_scaled) * 1.96 # 95%置信区间 actual_values = h_test test_time = self.test_df.index # 清除现有图表 self.ax.clear() # 计算合理的y轴范围 - 基于数据集中区域 # 获取实际值和预测值的中位数 median_val = np.median(actual_values) # 计算数据的波动范围(标准差) data_range = np.std(actual_values) * 4 # 4倍标准差覆盖大部分数据 # 设置y轴范围为中心值±数据波动范围 y_center = median_val y_half_range = max(data_range, 10) # 确保最小范围为20个单位 y_min_adjusted = y_center - y_half_range y_max_adjusted = y_center + y_half_range # 确保范围不为零 if y_max_adjusted - y_min_adjusted < 1: y_min_adjusted -= 5 y_max_adjusted += 5 # 绘制结果(带置信区间) self.ax.plot(test_time, actual_values, 'b-', label='真实值', linewidth=2) self.ax.plot(test_time, predictions, 'r--', label='预测均值', linewidth=2) self.ax.fill_between( test_time, (predictions - uncertainty).flatten(), (predictions + uncertainty).flatten(), color='orange', alpha=0.3, label='95%置信区间' ) # 设置自动调整的y轴范围 self.ax.set_ylim(y_min_adjusted, y_max_adjusted) self.ax.set_title('大坝渗流水位预测(PINNs with MC Dropout)') self.ax.set_xlabel('时间') self.ax.set_ylabel('测压管水位', rotation=0) self.ax.legend(loc='best') # 自动选择最佳位置 # 优化时间轴刻度 self.ax.xaxis.set_major_locator(mdates.YearLocator()) self.ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y')) self.ax.xaxis.set_minor_locator(mdates.MonthLocator(interval=2)) self.ax.grid(which='minor', axis='x', linestyle=':', color='gray', alpha=0.3) self.ax.grid(which='major', axis='y', linestyle='-', color='lightgray', alpha=0.5) self.ax.tick_params(axis='x', which='major', rotation=0, labelsize=9) self.ax.tick_params(axis='x', which='minor', length=2) # 计算评估指标(排除第一个点) eval_actual = actual_values[1:].flatten() eval_pred = predictions[1:].flatten() self.evaluation_metrics = self.calculate_metrics(eval_actual, eval_pred) # 添加不确定性指标 avg_uncertainty = np.mean(uncertainty) max_uncertainty = np.max(uncertainty) self.evaluation_metrics['Avg Uncertainty'] = avg_uncertainty self.evaluation_metrics['Max Uncertainty'] = max_uncertainty metrics_text = ( f"MSE: {self.evaluation_metrics['MSE']:.4f} | " f"RMSE: {self.evaluation_metrics['RMSE']:.4f} | " f"MAE: {self.evaluation_metrics['MAE']:.4f} | " f"MAPE: {self.evaluation_metrics['MAPE']:.2f}% | " f"R²: {self.evaluation_metrics['R2']:.4f}\n" f"平均不确定性: {avg_uncertainty:.4f} | 最大不确定性: {max_uncertainty:.4f}" ) self.metrics_var.set(metrics_text) # 在图表上添加指标 self.ax.text( 0.5, 1.05, metrics_text, transform=self.ax.transAxes, ha='center', fontsize=8, bbox=dict(facecolor='white', alpha=0.8) ) params_text = ( f"物理参数: k1={self.learned_params['k1']:.4f}, " f"k2={self.learned_params['k2']:.4f}, " f"alpha={self.learned_params['alpha']:.4f}, " f"beta={self.learned_params['beta']:.4f} | " f"Teacher Forcing概率: {teacher_forcing_prob}" ) self.ax.text( 0.5, 1.12, params_text, transform=self.ax.transAxes, ha='center', fontsize=8, bbox=dict(facecolor='white', alpha=0.8) ) # 调整布局 plt.tight_layout(pad=2.0) self.canvas.draw() # 保存预测结果 self.predictions = predictions self.uncertainty = uncertainty self.actual_values = actual_values self.test_time = test_time self.mc_predictions = mc_predictions_scaled self.status_var.set(f"预测完成(MC Dropout采样{mc_iterations}次)") except Exception as e: messagebox.showerror("预测错误", f"预测失败:\n{str(e)}") self.status_var.set("预测失败") import traceback traceback.print_exc() 查找错误并改正
最新发布
07-28
# -*- coding: utf-8 -*- """ Created on Sun Jul 20 16:20:23 2025 @author: srx20 """ # -*- coding: utf-8 -*- """ Created on Sun Jul 20 16:00:01 2025 @author: srx20 """ import os import gc import numpy as np import pandas as pd import joblib import talib as ta from tqdm import tqdm import random from sklearn.cluster import MiniBatchKMeans from sklearn.preprocessing import StandardScaler from sklearn.model_selection import RandomizedSearchCV, GroupKFold from sklearn.feature_selection import SelectKBest, f_classif from sklearn.metrics import make_scorer, recall_score, classification_report import lightgbm as lgb import logging import psutil import warnings from scipy import sparse warnings.filterwarnings('ignore') # 设置日志记录 logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', handlers=[ logging.FileHandler('stock_prediction_fixed.log'), logging.StreamHandler() ] ) logger = logging.getLogger(__name__) # ========== 配置类 ========== class StockConfig: def __init__(self): # 数据路径 self.SH_PATH = r"D:\股票量化数据库\股票csv数据\上证" self.SZ_PATH = r"D:\股票量化数据库\股票csv数据\深证" # 时间范围 self.START_DATE = "2018-01-01" self.END_DATE = "2025-7-18" self.TEST_START = "2021-01-01" self.TEST_END = "2024-12-31" # 聚类设置 self.CLUSTER_NUM = 8 self.CLUSTER_FEATURES = [ 'price_change', 'volatility', 'volume_change', 'MA5', 'MA20', 'RSI14', 'MACD_hist' ] # 预测特征 (初始列表,实际使用时会动态更新) self.PREDICT_FEATURES = [ 'open', 'high', 'low', 'close', 'volume', 'price_change', 'volatility', 'volume_change', 'MA5', 'MA20', 'RSI14', 'MACD_hist', 'cluster', 'MOM10', 'ATR14', 'VWAP', 'RSI_diff', 'price_vol_ratio', 'MACD_RSI', 'advance_decline', 'day_of_week', 'month' ] # 模型参数优化范围(内存优化版) self.PARAM_GRID = { 'boosting_type': ['gbdt'], # 减少选项 'num_leaves': [31, 63], # 减少选项 'max_depth': [-1, 7], # 减少选项 'learning_rate': [0.01, 0.05], 'n_estimators': [300, 500], # 减少选项 'min_child_samples': [50], # 固定值 'min_split_gain': [0.0, 0.1], 'reg_alpha': [0, 0.1], 'reg_lambda': [0, 0.1], 'feature_fraction': [0.7, 0.9], 'bagging_fraction': [0.7, 0.9], 'bagging_freq': [1] } # 目标条件 self.MIN_GAIN = 0.05 self.MIN_LOW_RATIO = 0.98 # 调试模式 self.DEBUG_MODE = False self.MAX_STOCKS = 50 if self.DEBUG_MODE else None self.SAMPLE_FRACTION = 0.3 if not self.DEBUG_MODE else 1.0 # 采样比例 # ========== 内存管理工具 ========== def reduce_mem_usage(df): """优化DataFrame内存使用""" start_mem = df.memory_usage().sum() / 1024**2 for col in df.columns: col_type = df[col].dtype if col_type != object: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) end_mem = df.memory_usage().sum() / 1024**2 logger.info(f'内存优化: 从 {start_mem:.2f} MB 减少到 {end_mem:.2f} MB ({100*(start_mem-end_mem)/start_mem:.1f}%)') return df def print_memory_usage(): """打印当前内存使用情况""" process = psutil.Process(os.getpid()) mem = process.memory_info().rss / (1024 ** 2) logger.info(f"当前内存使用: {mem:.2f} MB") # ========== 数据加载 (修复版) ========== def load_stock_data(sh_path, sz_path, start_date, end_date, sample_fraction=1.0, debug_mode=False, max_stocks=None): """加载股票数据,并过滤日期范围(修复随机抽样问题)""" stock_data = {} # 创建文件列表 all_files = [] for exchange, path in [('SH', sh_path), ('SZ', sz_path)]: if os.path.exists(path): csv_files = [f for f in os.listdir(path) if f.endswith('.csv')] for file in csv_files: all_files.append((exchange, path, file)) if not all_files: logger.warning("没有找到任何CSV文件") return stock_data # 随机抽样(修复一维问题) if sample_fraction < 1.0: sample_size = max(1, int(len(all_files) * sample_fraction)) # 使用random.sample代替np.random.choice all_files = random.sample(all_files, sample_size) logger.info(f"抽样 {len(all_files)} 只股票文件 (比例: {sample_fraction})") total_files = len(all_files) pbar = tqdm(total=total_files, desc='加载股票数据') loaded_count = 0 for exchange, path, file in all_files: if max_stocks is not None and loaded_count >= max_stocks: break if file.endswith('.csv'): stock_code = f"{exchange}_{file.split('.')[0]}" file_path = os.path.join(path, file) try: # 读取数据并验证列名 df = pd.read_csv(file_path) # 验证必要的列是否存在 required_cols = ['date', 'open', 'high', 'low', 'close', 'volume'] if not all(col in df.columns for col in required_cols): logger.warning(f"股票 {stock_code} 缺少必要列,跳过") pbar.update(1) continue # 转换日期并过滤 df['date'] = pd.to_datetime(df['date']) df = df[(df['date'] >= start_date) & (df['date'] <= end_date)] if len(df) < 100: # 至少100个交易日 logger.info(f"股票 {stock_code} 数据不足({len(df)}条),跳过") pbar.update(1) continue # 转换数据类型 for col in ['open', 'high', 'low', 'close']: df[col] = pd.to_numeric(df[col], errors='coerce').astype(np.float32) df['volume'] = pd.to_numeric(df['volume'], errors='coerce').astype(np.uint32) # 删除包含NaN的行 df = df.dropna(subset=required_cols) if len(df) > 0: stock_data[stock_code] = df loaded_count += 1 logger.debug(f"成功加载股票 {stock_code},数据条数: {len(df)}") else: logger.warning(f"股票 {stock_code} 过滤后无数据") except Exception as e: logger.error(f"加载股票 {stock_code} 失败: {str(e)}", exc_info=True) pbar.update(1) # 调试模式只处理少量股票 if debug_mode and loaded_count >= 10: logger.info("调试模式: 已加载10只股票,提前结束") break pbar.close() logger.info(f"成功加载 {len(stock_data)} 只股票数据") return stock_data # ========== 特征工程 (修复版) ========== class FeatureEngineer: def __init__(self, config): self.config = config def safe_fillna(self, series, default=0): """安全填充NaN值""" if isinstance(series, pd.Series): return series.fillna(default) elif isinstance(series, np.ndarray): return np.nan_to_num(series, nan=default) return series def transform(self, df): """添加技术指标特征(修复NumPy数组问题)""" try: # 创建临时副本用于TA-Lib计算 df_temp = df.copy() # 将价格列转换为float64以满足TA-Lib要求 for col in ['open', 'high', 'low', 'close']: df_temp[col] = df_temp[col].astype(np.float64) # 基础特征 df['price_change'] = df['close'].pct_change().fillna(0) df['volatility'] = df['close'].rolling(5).std().fillna(0) df['volume_change'] = df['volume'].pct_change().fillna(0) df['MA5'] = df['close'].rolling(5).mean().fillna(0) df['MA20'] = df['close'].rolling(20).mean().fillna(0) # 技术指标 - 修复NumPy数组问题 rsi = ta.RSI(df_temp['close'].values, timeperiod=14) df['RSI14'] = self.safe_fillna(rsi, 50) macd, macd_signal, macd_hist = ta.MACD( df_temp['close'].values, fastperiod=12, slowperiod=26, signalperiod=9 ) df['MACD_hist'] = self.safe_fillna(macd_hist, 0) # 新增特征 mom = ta.MOM(df_temp['close'].values, timeperiod=10) df['MOM10'] = self.safe_fillna(mom, 0) atr = ta.ATR( df_temp['high'].values, df_temp['low'].values, df_temp['close'].values, timeperiod=14 ) df['ATR14'] = self.safe_fillna(atr, 0) # 成交量加权平均价 vwap = (df['volume'] * (df['high'] + df['low'] + df['close']) / 3).cumsum() / df['volume'].cumsum() df['VWAP'] = self.safe_fillna(vwap, 0) # 相对强弱指数差值 df['RSI_diff'] = df['RSI14'] - df['RSI14'].rolling(5).mean().fillna(0) # 价格波动比率 df['price_vol_ratio'] = df['price_change'] / (df['volatility'].replace(0, 1e-8) + 1e-8) # 技术指标组合特征 df['MACD_RSI'] = df['MACD_hist'] * df['RSI14'] # 市场情绪指标 df['advance_decline'] = (df['close'] > df['open']).astype(int).rolling(5).sum().fillna(0) # 时间特征 df['day_of_week'] = df['date'].dt.dayofweek df['month'] = df['date'].dt.month # 处理无穷大和NaN df = df.replace([np.inf, -np.inf], np.nan) df = df.fillna(0) # 优化内存 return reduce_mem_usage(df) except Exception as e: logger.error(f"特征工程失败: {str(e)}", exc_info=True) # 返回基本特征作为回退方案 df['price_change'] = df['close'].pct_change().fillna(0) df['volatility'] = df['close'].rolling(5).std().fillna(0) df['volume_change'] = df['volume'].pct_change().fillna(0) df['MA5'] = df['close'].rolling(5).mean().fillna(0) df['MA20'] = df['close'].rolling(20).mean().fillna(0) # 填充缺失的技术指标 for col in self.config.PREDICT_FEATURES: if col not in df.columns: df[col] = 0 return df # ========== 聚类模型 (添加保存/加载功能) ========== class StockCluster: def __init__(self, config): self.config = config self.scaler = StandardScaler() self.kmeans = MiniBatchKMeans( n_clusters=config.CLUSTER_NUM, random_state=42, batch_size=1000 ) self.cluster_map = {} # 股票代码到聚类ID的映射 self.model_file = "stock_cluster_model.pkl" # 模型保存路径 def save(self): """保存聚类模型到文件""" # 创建包含所有必要组件的字典 model_data = { 'kmeans': self.kmeans, 'scaler': self.scaler, 'cluster_map': self.cluster_map, 'config_cluster_num': self.config.CLUSTER_NUM } # 使用joblib保存模型 joblib.dump(model_data, self.model_file) logger.info(f"聚类模型已保存到: {self.model_file}") def load(self): """从文件加载聚类模型""" if os.path.exists(self.model_file): model_data = joblib.load(self.model_file) self.kmeans = model_data['kmeans'] self.scaler = model_data['scaler'] self.cluster_map = model_data['cluster_map'] logger.info(f"从 {self.model_file} 加载聚类模型") return True else: logger.warning("聚类模型文件不存在,需要重新训练") return False def fit(self, stock_data): """训练聚类模型""" logger.info("开始股票聚类分析...") cluster_features = [] # 提取每只股票的特征 for stock_code, df in tqdm(stock_data.items(), desc="提取聚类特征"): if len(df) < 100: # 至少100个交易日 continue features = {} for feat in self.config.CLUSTER_FEATURES: if feat in df.columns: # 使用统计特征 features[f"{feat}_mean"] = df[feat].mean() features[f"{feat}_std"] = df[feat].std() else: # 特征缺失时填充0 features[f"{feat}_mean"] = 0 features[f"{feat}_std"] = 0 cluster_features.append(features) if not cluster_features: logger.warning("没有可用的聚类特征,使用默认聚类") # 创建默认聚类映射 self.cluster_map = {code: 0 for code in stock_data.keys()} return self # 创建特征DataFrame feature_df = pd.DataFrame(cluster_features) feature_df = reduce_mem_usage(feature_df) # 标准化特征 scaled_features = self.scaler.fit_transform(feature_df) # 聚类 self.kmeans.fit(scaled_features) clusters = self.kmeans.predict(scaled_features) feature_df['cluster'] = clusters # 创建股票到聚类的映射 stock_codes = list(stock_data.keys())[:len(clusters)] # 确保长度匹配 for i, stock_code in enumerate(stock_codes): self.cluster_map[stock_code] = clusters[i] logger.info("聚类分布统计:") logger.info(feature_df['cluster'].value_counts().to_string()) logger.info(f"股票聚类完成,共分为 {self.config.CLUSTER_NUM} 个类别") # 训练完成后自动保存模型 self.save() return self def transform(self, df, stock_code): """为数据添加聚类特征""" cluster_id = self.cluster_map.get(stock_code, -1) # 默认为-1表示未知聚类 df['cluster'] = cluster_id return df # ========== 目标创建 ========== class TargetCreator: def __init__(self, config): self.config = config def create_targets(self, df): """创建目标变量 - 修改为收盘价高于开盘价5%""" # 计算次日收盘价相对于开盘价的涨幅 df['next_day_open_to_close_gain'] = df['close'].shift(-1) / df['open'].shift(-1) - 1 # 计算次日最低价与开盘价比例 df['next_day_low_ratio'] = df['low'].shift(-1) / df['open'].shift(-1) # 创建复合目标:收盘价比开盘价高5% 且 最低价≥开盘价98% df['target'] = 0 mask = (df['next_day_open_to_close_gain'] > self.config.MIN_GAIN) & \ (df['next_day_low_ratio'] >= self.config.MIN_LOW_RATIO) df.loc[mask, 'target'] = 1 # 删除最后一行(没有次日数据) df = df.iloc[:-1] # 检查目标分布 target_counts = df['target'].value_counts() logger.info(f"目标分布: 0={target_counts.get(0, 0)}, 1={target_counts.get(1, 0)}") # 添加调试信息 if self.config.DEBUG_MODE: sample_targets = df[['open', 'close', 'next_day_open_to_close_gain', 'target']].tail(5) logger.debug(f"目标创建示例:\n{sample_targets}") return df # ========== 模型训练 (内存优化版) ========== class StockModelTrainer: def __init__(self, config): self.config = config self.model_name = "stock_prediction_model" self.feature_importance = None def prepare_dataset(self, stock_data, cluster_model, feature_engineer): """准备训练数据集(内存优化版)""" logger.info("准备训练数据集...") X_list = [] y_list = [] stock_group_list = [] # 用于分组交叉验证 target_creator = TargetCreator(self.config) # 使用生成器减少内存占用 for stock_code, df in tqdm(stock_data.items(), desc="处理股票数据"): try: # 特征工程 df = feature_engineer.transform(df.copy()) # 添加聚类特征 df = cluster_model.transform(df, stock_code) # 创建目标 df = target_creator.create_targets(df) # 只保留所需特征和目标 features = self.config.PREDICT_FEATURES if 'target' not in df.columns: logger.warning(f"股票 {stock_code} 缺少目标列,跳过") continue X = df[features] y = df['target'] # 确保没有NaN值 if X.isnull().any().any(): logger.warning(f"股票 {stock_code} 特征包含NaN值,跳过") continue # 使用稀疏矩阵存储(减少内存) sparse_X = sparse.csr_matrix(X.values.astype(np.float32)) X_list.append(sparse_X) y_list.append(y.values) stock_group_list.extend([stock_code] * len(X)) # 为每个样本添加股票代码作为组标识 # 定期清理内存 if len(X_list) % 100 == 0: gc.collect() print_memory_usage() except Exception as e: logger.error(f"处理股票 {stock_code} 失败: {str(e)}", exc_info=True) if not X_list: logger.error("没有可用的训练数据") return None, None, None # 合并所有数据 X_full = sparse.vstack(X_list) y_full = np.concatenate(y_list) groups = np.array(stock_group_list) logger.info(f"数据集准备完成,样本数: {X_full.shape[0]}") logger.info(f"目标分布: 0={sum(y_full==0)}, 1={sum(y_full==1)}") return X_full, y_full, groups def feature_selection(self, X, y): """执行特征选择(内存优化版)""" logger.info("执行特征选择...") # 使用基模型评估特征重要性 base_model = lgb.LGBMClassifier( n_estimators=100, random_state=42, n_jobs=-1 ) # 分批训练(减少内存占用) batch_size = 100000 for i in range(0, X.shape[0], batch_size): end_idx = min(i + batch_size, X.shape[0]) X_batch = X[i:end_idx].toarray() if sparse.issparse(X) else X[i:end_idx] y_batch = y[i:end_idx] if i == 0: base_model.fit(X_batch, y_batch) else: base_model.fit(X_batch, y_batch, init_model=base_model) # 获取特征重要性 importance = pd.Series(base_model.feature_importances_, index=self.config.PREDICT_FEATURES) importance = importance.sort_values(ascending=False) logger.info("特征重要性:\n" + importance.to_string()) # 选择前K个重要特征 k = min(15, len(self.config.PREDICT_FEATURES)) selected_features = importance.head(k).index.tolist() logger.info(f"选择前 {k} 个特征: {selected_features}") # 更新配置中的特征列表 self.config.PREDICT_FEATURES = selected_features # 转换特征矩阵 if sparse.issparse(X): # 对于稀疏矩阵,我们需要重新索引 feature_indices = [self.config.PREDICT_FEATURES.index(f) for f in selected_features] X_selected = X[:, feature_indices] else: X_selected = X[selected_features] return X_selected, selected_features def train_model(self, X, y, groups): """训练并优化模型(内存优化版)""" if X is None or len(y) == 0: logger.error("训练数据为空,无法训练模型") return None logger.info("开始训练模型...") # 1. 处理类别不平衡 pos_count = sum(y == 1) neg_count = sum(y == 0) scale_pos_weight = neg_count / pos_count logger.info(f"类别不平衡处理: 正样本权重 = {scale_pos_weight:.2f}") # 2. 特征选择 X_selected, selected_features = self.feature_selection(X, y) # 3. 自定义评分函数 - 关注正类召回率 def positive_recall_score(y_true, y_pred): return recall_score(y_true, y_pred, pos_label=1) custom_scorer = make_scorer(positive_recall_score, greater_is_better=True) # 4. 使用分组时间序列交叉验证(减少折数) group_kfold = GroupKFold(n_splits=2) # 减少折数以节省内存 cv = list(group_kfold.split(X_selected, y, groups=groups)) # 5. 创建模型 model = lgb.LGBMClassifier( objective='binary', random_state=42, n_jobs=-1, scale_pos_weight=scale_pos_weight, verbose=-1 ) # 6. 参数搜索(减少迭代次数) search = RandomizedSearchCV( estimator=model, param_distributions=self.config.PARAM_GRID, n_iter=10, # 减少迭代次数以节省内存 scoring=custom_scorer, cv=cv, verbose=2, n_jobs=1, # 减少并行任务以节省内存 pre_dispatch='2*n_jobs', # 控制任务分发 random_state=42 ) logger.info("开始参数搜索...") # 分批处理数据(减少内存占用) if sparse.issparse(X_selected): X_dense = X_selected.toarray() # 转换为密集矩阵用于搜索 else: X_dense = X_selected search.fit(X_dense, y) # 7. 使用最佳参数训练最终模型 best_params = search.best_params_ logger.info(f"最佳参数: {best_params}") logger.info(f"最佳召回率: {search.best_score_}") final_model = lgb.LGBMClassifier( **best_params, objective='binary', random_state=42, n_jobs=-1, scale_pos_weight=scale_pos_weight ) # 使用早停策略训练最终模型 logger.info("训练最终模型...") final_model.fit( X_dense, y, eval_set=[(X_dense, y)], eval_metric='binary_logloss', callbacks=[ lgb.early_stopping(stopping_rounds=50, verbose=False), lgb.log_evaluation(period=100) ] ) # 保存特征重要性 self.feature_importance = pd.Series( final_model.feature_importances_, index=selected_features ).sort_values(ascending=False) # 8. 保存模型 model_path = f"{self.model_name}.pkl" joblib.dump((final_model, selected_features), model_path) logger.info(f"模型已保存到: {model_path}") return final_model def evaluate_model(self, model, X_test, y_test): """评估模型性能""" if model is None or len(X_test) == 0: logger.warning("无法评估模型,缺少数据或模型") return # 预测测试集 y_pred = model.predict(X_test) # 计算召回率 recall = recall_score(y_test, y_pred, pos_label=1) logger.info(f"测试集召回率: {recall:.4f}") # 计算满足条件的样本比例 condition_ratio = sum(y_test == 1) / len(y_test) logger.info(f"满足条件的样本比例: {condition_ratio:.4f}") # 详细分类报告 report = classification_report(y_test, y_pred) logger.info("分类报告:\n" + report) # 特征重要性 if self.feature_importance is not None: logger.info("特征重要性:\n" + self.feature_importance.to_string()) # ========== 主程序 ========== def main(): # 初始化配置 config = StockConfig() logger.info("===== 股票上涨预测程序 (修复版) =====") # 加载训练数据(添加抽样) logger.info(f"加载训练数据: {config.START_DATE} 至 {config.END_DATE}") train_data = load_stock_data( config.SH_PATH, config.SZ_PATH, config.START_DATE, config.END_DATE, sample_fraction=config.SAMPLE_FRACTION, debug_mode=config.DEBUG_MODE, max_stocks=config.MAX_STOCKS ) if not train_data: logger.error("错误: 没有加载到任何股票数据,请检查数据路径和格式") return # 特征工程 feature_engineer = FeatureEngineer(config) # 聚类分析 - 尝试加载现有模型,否则训练新模型 cluster_model = StockCluster(config) if not cluster_model.load(): # 尝试加载模型 try: cluster_model.fit(train_data) except Exception as e: logger.error(f"聚类分析失败: {str(e)}", exc_info=True) # 创建默认聚类映射 cluster_model.cluster_map = {code: 0 for code in train_data.keys()} logger.info("使用默认聚类(所有股票归为同一类)") cluster_model.save() # 保存默认聚类模型 # 准备训练数据 trainer = StockModelTrainer(config) try: X_train, y_train, groups = trainer.prepare_dataset( train_data, cluster_model, feature_engineer ) except Exception as e: logger.error(f"准备训练数据失败: {str(e)}", exc_info=True) return if X_train is None or len(y_train) == 0: logger.error("错误: 没有可用的训练数据") return # 训练模型 model = trainer.train_model(X_train, y_train, groups) if model is None: logger.error("模型训练失败") return # 加载测试数据(添加抽样) logger.info(f"\n加载测试数据: {config.TEST_START} 至 {config.TEST_END}") test_data = load_stock_data( config.SH_PATH, config.SZ_PATH, config.TEST_START, config.TEST_END, sample_fraction=config.SAMPLE_FRACTION, debug_mode=config.DEBUG_MODE, max_stocks=config.MAX_STOCKS ) if test_data: # 准备测试数据 X_test, y_test, _ = trainer.prepare_dataset( test_data, cluster_model, feature_engineer ) if X_test is not None and len(y_test) > 0: # 评估模型 if sparse.issparse(X_test): X_test = X_test.toarray() trainer.evaluate_model(model, X_test, y_test) else: logger.warning("测试数据准备失败,无法评估模型") else: logger.warning("没有测试数据可用") logger.info("===== 程序执行完成 =====") if __name__ == "__main__": main() 这串代码有以下报错: Traceback (most recent call last): File "d:\股票量化数据库\股票量化数据库\大涨预测模型训练程序3.0.py", line 303, in transform return reduce_mem_usage(df) ^^^^^^^^^^^^^^^^^^^^ File "d:\股票量化数据库\股票量化数据库\大涨预测模型训练程序3.0.py", line 121, in reduce_mem_usage if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ TypeError: '>' not supported between instances of 'Timestamp' and 'numpy.float16' 2025-07-20 17:55:12,250 - INFO - 目标分布: 0=265, 1=0 2025-07-20 17:55:12,266 - ERROR - 特征工程失败: '>' not supported between instances of 'Timestamp' and 'numpy.float16'
07-21
import tkinter as tk from tkinter import ttk, filedialog, messagebox import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Dense, Lambda from tensorflow.keras.optimizers import Adam from sklearn.preprocessing import MinMaxScaler import os import time import warnings import matplotlib.dates as mdates warnings.filterwarnings('ignore', category=UserWarning, module='tensorflow') mpl.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'Arial Unicode MS'] mpl.rcParams['axes.unicode_minus'] = False # 关键修复:使用 ASCII 减号 # 设置中文字体支持 plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False class PINNModel(tf.keras.Model): def __init__(self, num_layers=4, hidden_units=32, dropout_rate=0.1, l2_reg=0.001, **kwargs): super(PINNModel, self).__init__(**kwargs) # 增加输入维度处理能力 self.dense_layers = [] self.bn_layers = [] # 批量归一化层 self.dropout_layers = [] # 添加L2正则化 self.l2_reg = l2_reg # 创建更深的网络结构 for i in range(num_layers): # 第一层使用更大的维度 units = hidden_units * 2 if i == 0 else hidden_units self.dense_layers.append( Dense(units, activation='swish', # 使用Swish激活函数 kernel_regularizer=tf.keras.regularizers.l2(l2_reg)) ) self.bn_layers.append(tf.keras.layers.BatchNormalization()) self.dropout_layers.append(tf.keras.layers.Dropout(dropout_rate)) # 添加跳跃连接层 self.residual_layer = Dense(hidden_units, activation='linear') # 最终输出层 self.final_layer = Dense(1, activation='linear', kernel_regularizer=tf.keras.regularizers.l2(l2_reg)) # 物理参数优化 - 使用更灵活的参数化方法 # 基本衰减系数 (使用指数确保正值) self.k1_log = tf.Variable(tf.math.log(0.1), trainable=True, dtype=tf.float32, name='k1_log') # 水位依赖的衰减系数 (使用softplus确保正值) self.k2_raw = tf.Variable(0.01, trainable=True, dtype=tf.float32, name='k2_raw') # 非线性项系数 (使用sigmoid约束在[0,1]) self.alpha_raw = tf.Variable(0.1, trainable=True, dtype=tf.float32, name='alpha_raw') # 外部影响系数 (使用tanh约束在[-0.2,0.2]) self.beta_raw = tf.Variable(0.05, trainable=True, dtype=tf.float32, name='beta_raw') @property def k1(self): """指数变换确保正值""" return tf.exp(self.k1_log) @property def k2(self): """Softplus变换确保正值""" return tf.math.softplus(self.k2_raw) * 0.1 # 约束在0-0.1之间 @property def alpha(self): """Sigmoid约束在[0,1]""" return tf.math.sigmoid(self.alpha_raw) @property def beta(self): """Tanh约束在[-0.2,0.2]""" return tf.math.tanh(self.beta_raw) * 0.2 def call(self, inputs, training=False): # 解包输入 t, h, dt, lag1, lag3, lag7, month_feats, season_feats = inputs # 组合所有特征 x = tf.concat([ t, h, dt, lag1, lag3, lag7, month_feats, season_feats, t * h, h * dt, t * dt, (t * h * dt), h * lag1, h * lag3, h * lag7, dt * lag1, dt * lag3, dt * lag7 ], axis=1) # 初始投影层 x_proj = Dense(64, activation='swish')(x) # 残差块 residual = self.residual_layer(x_proj) # 通过所有隐藏层(带批量归一化和dropout) for i, (dense_layer, bn_layer, dropout_layer) in enumerate(zip( self.dense_layers, self.bn_layers, self.dropout_layers)): # 第一层使用残差连接 if i == 0: x = dense_layer(x_proj) x = bn_layer(x, training=training) x = dropout_layer(x, training=training) x = x + residual # 残差连接 else: x = dense_layer(x) x = bn_layer(x, training=training) x = dropout_layer(x, training=training) # 注意力机制 - 增强重要特征 attention = Dense(x.shape[-1], activation='sigmoid')(x) x = x * attention return self.final_layer(x) def physics_loss(self, t, h_current, dt, training=False): """改进的物理损失计算""" # 创建零值占位符 batch_size = tf.shape(t)[0] zeros = tf.zeros((batch_size, 1), dtype=tf.float32) zeros2 = tf.zeros((batch_size, 2), dtype=tf.float32) # 预测下一时刻水位 h_next_pred = self([t, h_current, dt, zeros, zeros, zeros, zeros2, zeros2], training=training) # 物理方程计算 - 使用改进的公式 # 非线性衰减项 decay_factor = self.k1 + self.k2 * h_current exponent = -decay_factor * dt exponent = tf.clip_by_value(exponent, -50.0, 50.0) decay_term = h_current * tf.exp(exponent) # 外部影响项(考虑时间依赖性) external_factor = self.alpha * self.beta * dt external_factor = tf.clip_by_value(external_factor, -10.0, 10.0) external_term = self.alpha * (1 - tf.exp(-external_factor)) # 残差计算 residual = h_next_pred - (decay_term + external_term) # 添加物理参数正则化(鼓励简单物理模型) param_reg = 0.01 * (tf.abs(self.k1) + tf.abs(self.k2) + tf.abs(self.alpha) + tf.abs(self.beta)) return tf.reduce_mean(tf.square(residual)) + param_reg class DamSeepageModel: def __init__(self, root): self.root = root self.root.title("大坝渗流预测模型(PINNs)") self.root.geometry("1200x800") # 初始化数据 self.train_df = None # 训练集 self.test_df = None # 测试集 self.model = None self.scaler_t = MinMaxScaler(feature_range=(0, 1)) self.scaler_h = MinMaxScaler(feature_range=(0, 1)) self.scaler_dt = MinMaxScaler(feature_range=(0, 1)) self.evaluation_metrics = {} # 创建主界面 self.create_widgets() def create_widgets(self): # 创建主框架 main_frame = ttk.Frame(self.root, padding=10) main_frame.pack(fill=tk.BOTH, expand=True) # 左侧控制面板 control_frame = ttk.LabelFrame(main_frame, text="模型控制", padding=10) control_frame.pack(side=tk.LEFT, fill=tk.Y, padx=5, pady=5) # 文件选择部分 file_frame = ttk.LabelFrame(control_frame, text="数据文件", padding=10) file_frame.pack(fill=tk.X, pady=5) # 训练集选择 ttk.Label(file_frame, text="训练集:").grid(row=0, column=0, sticky=tk.W, pady=5) self.train_file_var = tk.StringVar() ttk.Entry(file_frame, textvariable=self.train_file_var, width=30, state='readonly').grid( row=0, column=1, padx=5) ttk.Button(file_frame, text="选择文件", command=lambda: self.select_file("train")).grid(row=0, column=2) # 测试集选择 ttk.Label(file_frame, text="测试集:").grid(row=1, column=0, sticky=tk.W, pady=5) self.test_file_var = tk.StringVar() ttk.Entry(file_frame, textvariable=self.test_file_var, width=30, state='readonly').grid(row=1, column=1, padx=5) ttk.Button(file_frame, text="选择文件", command=lambda: self.select_file("test")).grid(row=1, column=2) # PINNs参数设置 param_frame = ttk.LabelFrame(control_frame, text="PINNs参数", padding=10) param_frame.pack(fill=tk.X, pady=10) # 验证集切分比例 ttk.Label(param_frame, text="验证集比例:").grid(row=0, column=0, sticky=tk.W, pady=5) self.split_ratio_var = tk.DoubleVar(value=0.2) ttk.Spinbox(param_frame, from_=0, to=1, increment=0.05, textvariable=self.split_ratio_var, width=10).grid(row=0, column=1, padx=5) # 隐藏层数量 ttk.Label(param_frame, text="网络层数:").grid(row=1, column=0, sticky=tk.W, pady=5) self.num_layers_var = tk.IntVar(value=4) ttk.Spinbox(param_frame, from_=2, to=8, increment=1, textvariable=self.num_layers_var, width=10).grid(row=1, column=1, padx=5) # 每层神经元数量 ttk.Label(param_frame, text="神经元数/层:").grid(row=2, column=0, sticky=tk.W, pady=5) self.hidden_units_var = tk.IntVar(value=32) ttk.Spinbox(param_frame, from_=16, to=128, increment=4, textvariable=self.hidden_units_var, width=10).grid(row=2, column=1, padx=5) # 训练轮次 ttk.Label(param_frame, text="训练轮次:").grid(row=3, column=0, sticky=tk.W, pady=5) self.epochs_var = tk.IntVar(value=500) ttk.Spinbox(param_frame, from_=100, to=2000, increment=100, textvariable=self.epochs_var, width=10).grid(row=3, column=1, padx=5) # 物理损失权重 ttk.Label(param_frame, text="物理损失权重:").grid(row=4, column=0, sticky=tk.W, pady=5) self.physics_weight_var = tk.DoubleVar(value=0.5) ttk.Spinbox(param_frame, from_=0.1, to=1.0, increment=0.1, textvariable=self.physics_weight_var, width=10).grid(row=4, column=1, padx=5) # 控制按钮 btn_frame = ttk.Frame(control_frame) btn_frame.pack(fill=tk.X, pady=10) ttk.Button(btn_frame, text="训练模型", command=self.train_model).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="预测结果", command=self.predict).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="保存结果", command=self.save_results).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="重置", command=self.reset).pack(side=tk.RIGHT, padx=5) # 状态栏 self.status_var = tk.StringVar(value="就绪") status_bar = ttk.Label(control_frame, textvariable=self.status_var, relief=tk.SUNKEN, anchor=tk.W) status_bar.pack(fill=tk.X, side=tk.BOTTOM) # 右侧结果显示区域 result_frame = ttk.Frame(main_frame) result_frame.pack(side=tk.RIGHT, fill=tk.BOTH, expand=True, padx=5, pady=5) # 创建标签页 self.notebook = ttk.Notebook(result_frame) self.notebook.pack(fill=tk.BOTH, expand=True) # 损失曲线标签页 self.loss_frame = ttk.Frame(self.notebook) self.notebook.add(self.loss_frame, text="训练损失") # 预测结果标签页 self.prediction_frame = ttk.Frame(self.notebook) self.notebook.add(self.prediction_frame, text="预测结果") # 指标显示 self.metrics_var = tk.StringVar() metrics_label = ttk.Label( self.prediction_frame, textvariable=self.metrics_var, font=('TkDefaultFont', 10, 'bold'), relief='ridge', padding=5 ) metrics_label.pack(fill=tk.X, padx=5, pady=5) # 初始化绘图区域 self.fig, self.ax = plt.subplots(figsize=(10, 6)) self.canvas = FigureCanvasTkAgg(self.fig, master=self.prediction_frame) self.canvas.get_tk_widget().pack(fill=tk.BOTH, expand=True) # 损失曲线画布 self.loss_fig, self.loss_ax = plt.subplots(figsize=(10, 4)) self.loss_canvas = FigureCanvasTkAgg(self.loss_fig, master=self.loss_frame) self.loss_canvas.get_tk_widget().pack(fill=tk.BOTH, expand=True) def select_file(self, file_type): """选择Excel文件并计算时间步长""" try: file_path = filedialog.askopenfilename( title=f"选择{file_type}集Excel文件", filetypes=[("Excel文件", "*.xlsx *.xls"), ("所有文件", "*.*")] ) if not file_path: return df = pd.read_excel(file_path) # 验证必需列是否存在 required_cols = ['year', 'month', 'day', '水位'] missing_cols = [col for col in required_cols if col not in df.columns] if missing_cols: messagebox.showerror("列名错误", f"缺少必需列: {', '.join(missing_cols)}") return # 时间特征处理 time_features = ['year', 'month', 'day'] missing_time_features = [feat for feat in time_features if feat not in df.columns] if missing_time_features: messagebox.showerror("列名错误", f"Excel文件缺少预处理后的时间特征列: {', '.join(missing_time_features)}") return # 创建时间戳列 (增强兼容性) time_cols = ['year', 'month', 'day'] if 'hour' in df.columns: time_cols.append('hour') if 'minute' in df.columns: time_cols.append('minute') if 'second' in df.columns: time_cols.append('second') # 填充缺失的时间单位 for col in ['hour', 'minute', 'second']: if col not in df.columns: df[col] = 0 df['datetime'] = pd.to_datetime(df[time_cols]) # 设置时间索引 df = df.set_index('datetime') # 计算相对时间(天) df['days'] = (df.index - df.index[0]).days # 新增:计算时间步长dt(单位:天) df['dt'] = df.index.to_series().diff().dt.total_seconds() / 86400 # 精确到秒级 # 处理时间步长异值 if len(df) > 1: # 计算有效时间步长(排除<=0的值) valid_dt = df['dt'][df['dt'] > 0] if len(valid_dt) > 0: avg_dt = valid_dt.mean() else: avg_dt = 1.0 else: avg_dt = 1.0 # 替换非正值 df.loc[df['dt'] <= 0, 'dt'] = avg_dt # 填充缺失值 df['dt'] = df['dt'].fillna(avg_dt) # 添加滞后特征 (1天、3天、7天的水位) df['水位_lag1'] = df['水位'].shift(1) df['水位_lag3'] = df['水位'].shift(3) df['水位_lag7'] = df['水位'].shift(7) # 填充缺失的滞后值(用第一个有效值向后填充) lag_cols = ['水位_lag1', '水位_lag3', '水位_lag7'] df[lag_cols] = df[lag_cols].fillna(method='bfill') # 添加周期性特征 df['month'] = df.index.month df['day_of_year'] = df.index.dayofyear # 月份的正弦/余弦变换 df['month_sin'] = np.sin(2 * np.pi * df['month'] / 12) df['month_cos'] = np.cos(2 * np.pi * df['month'] / 12) # 季节特征(每3个月一个季节) seasons = [(12, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11)] season_map = {} for i, months in enumerate(seasons): for month in months: season_map[month] = i df['season'] = df['month'].map(season_map) # 季节的正弦/余弦变换 df['season_sin'] = np.sin(2 * np.pi * df['season'] / 4) df['season_cos'] = np.cos(2 * np.pi * df['season'] / 4) # 保存数据 if file_type == "train": self.train_df = df self.train_file_var.set(os.path.basename(file_path)) self.status_var.set(f"已加载训练集: {len(self.train_df)}条数据") else: self.test_df = df self.test_file_var.set(os.path.basename(file_path)) self.status_var.set(f"已加载测试集: {len(self.test_df)}条数据") except Exception as e: error_msg = f"文件读取失败: {str(e)}\n\n请确保:\n1. 文件不是打开状态\n2. 文件格式正确\n3. 包含必需的时间和水位列" messagebox.showerror("文件错误", error_msg) def calculate_metrics(self, y_true, y_pred): """计算评估指标""" from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score mse = mean_squared_error(y_true, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y_true, y_pred) non_zero_idx = np.where(y_true != 0)[0] if len(non_zero_idx) > 0: mape = np.mean(np.abs((y_true[non_zero_idx] - y_pred[non_zero_idx]) / y_true[non_zero_idx])) * 100 else: mape = float('nan') r2 = r2_score(y_true, y_pred) return { 'MSE': mse, 'RMSE': rmse, 'MAE': mae, 'MAPE': mape, # 修正键名 'R2': r2 } def train_model(self): """训练PINNs模型(带早停机制+训练指标监控)""" if self.train_df is None: messagebox.showwarning("警告", "请先选择训练集文件") return try: self.status_var.set("正在预处理数据...") self.root.update() # 从训练集中切分训练子集和验证子集(时间顺序切分) split_ratio = 1 - self.split_ratio_var.get() split_idx = int(len(self.train_df) * split_ratio) train_subset = self.train_df.iloc[:split_idx] valid_subset = self.train_df.iloc[split_idx:] # 检查数据量是否足够 if len(train_subset) < 2 or len(valid_subset) < 2: messagebox.showerror("数据错误", "训练集数据量不足(至少需要2个时间步)") return # ===== 新增:创建特征归一化器 ===== self.scaler_lag1 = MinMaxScaler(feature_range=(0, 1)) self.scaler_lag3 = MinMaxScaler(feature_range=(0, 1)) self.scaler_lag7 = MinMaxScaler(feature_range=(0, 1)) self.scaler_month = MinMaxScaler(feature_range=(0, 1)) self.scaler_season = MinMaxScaler(feature_range=(0, 1)) # 数据预处理 - 分别归一化不同特征 # 时间特征 t_train = train_subset['days'].values[1:].reshape(-1, 1) self.scaler_t.fit(t_train) t_train_scaled = self.scaler_t.transform(t_train).astype(np.float32) # 水位特征 h_train = train_subset['水位'].values[:-1].reshape(-1, 1) self.scaler_h.fit(h_train) h_train_scaled = self.scaler_h.transform(h_train).astype(np.float32) # 时间步长特征 dt_train = train_subset['dt'].values[1:].reshape(-1, 1) self.scaler_dt.fit(dt_train) dt_train_scaled = self.scaler_dt.transform(dt_train).astype(np.float32) # ===== 新增:归一化滞后特征 ===== lag1_train = train_subset['水位_lag1'].values[:-1].reshape(-1, 1) self.scaler_lag1.fit(lag1_train) lag1_train_scaled = self.scaler_lag1.transform(lag1_train).astype(np.float32) lag3_train = train_subset['水位_lag3'].values[:-1].reshape(-1, 1) self.scaler_lag3.fit(lag3_train) lag3_train_scaled = self.scaler_lag3.transform(lag3_train).astype(np.float32) lag7_train = train_subset['水位_lag7'].values[:-1].reshape(-1, 1) self.scaler_lag7.fit(lag7_train) lag7_train_scaled = self.scaler_lag7.transform(lag7_train).astype(np.float32) # ===== 新增:归一化周期性特征 ===== month_sin_train = train_subset['month_sin'].values[:-1].reshape(-1, 1) month_cos_train = train_subset['month_cos'].values[:-1].reshape(-1, 1) month_features_train = np.hstack([month_sin_train, month_cos_train]) self.scaler_month.fit(month_features_train) month_features_train_scaled = self.scaler_month.transform(month_features_train).astype(np.float32) season_sin_train = train_subset['season_sin'].values[:-1].reshape(-1, 1) season_cos_train = train_subset['season_cos'].values[:-1].reshape(-1, 1) season_features_train = np.hstack([season_sin_train, season_cos_train]) self.scaler_season.fit(season_features_train) season_features_train_scaled = self.scaler_season.transform(season_features_train).astype(np.float32) # 归一化标签(下一时刻水位) h_next_train = train_subset['水位'].values[1:].reshape(-1, 1) h_next_train_scaled = self.scaler_h.transform(h_next_train).astype(np.float32) # 准备验证数据(同样进行归一化) t_valid = valid_subset['days'].values[1:].reshape(-1, 1) t_valid_scaled = self.scaler_t.transform(t_valid).astype(np.float32) h_valid = valid_subset['水位'].values[:-1].reshape(-1, 1) h_valid_scaled = self.scaler_h.transform(h_valid).astype(np.float32) dt_valid = valid_subset['dt'].values[1:].reshape(-1, 1) dt_valid_scaled = self.scaler_dt.transform(dt_valid).astype(np.float32) h_next_valid_scaled = self.scaler_h.transform( valid_subset['水位'].values[1:].reshape(-1, 1) ).astype(np.float32) # 原始值用于指标计算 h_next_train_true = h_next_train h_next_valid_true = valid_subset['水位'].values[1:].reshape(-1, 1) # 创建模型和优化器 self.model = PINNModel( num_layers=self.num_layers_var.get(), hidden_units=self.hidden_units_var.get() ) # 创建动态学习率调度器 initial_lr = 0.001 lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay( initial_learning_rate=initial_lr, decay_steps=100, # 每100步衰减一次 decay_rate=0.95, # 衰减率 staircase=True # 阶梯式衰减 ) optimizer = Adam(learning_rate=lr_schedule) # ===== 新增:验证集的滞后特征归一化 ===== lag1_valid = valid_subset['水位_lag1'].values[:-1].reshape(-1, 1) lag1_valid_scaled = self.scaler_lag1.transform(lag1_valid).astype(np.float32) lag3_valid = valid_subset['水位_lag3'].values[:-1].reshape(-1, 1) lag3_valid_scaled = self.scaler_lag3.transform(lag3_valid).astype(np.float32) lag7_valid = valid_subset['水位_lag7'].values[:-1].reshape(-1, 1) lag7_valid_scaled = self.scaler_lag7.transform(lag7_valid).astype(np.float32) # ===== 新增:验证集的周期性特征归一化 ===== month_sin_valid = valid_subset['month_sin'].values[:-1].reshape(-1, 1) month_cos_valid = valid_subset['month_cos'].values[:-1].reshape(-1, 1) month_features_valid = np.hstack([month_sin_valid, month_cos_valid]) month_features_valid_scaled = self.scaler_month.transform(month_features_valid).astype(np.float32) season_sin_valid = valid_subset['season_sin'].values[:-1].reshape(-1, 1) season_cos_valid = valid_subset['season_cos'].values[:-1].reshape(-1, 1) season_features_valid = np.hstack([season_sin_valid, season_cos_valid]) season_features_valid_scaled = self.scaler_season.transform(season_features_valid).astype(np.float32) # 在训练循环中,使用归一化后的数据 train_dataset = tf.data.Dataset.from_tensor_slices( ((t_train_scaled, h_train_scaled, dt_train_scaled, lag1_train_scaled, lag3_train_scaled, lag7_train_scaled, month_features_train_scaled, season_features_train_scaled), h_next_train_scaled) ) train_dataset = train_dataset.shuffle(buffer_size=1024).batch(32) valid_dataset = tf.data.Dataset.from_tensor_slices( ((t_valid_scaled, h_valid_scaled, dt_valid_scaled, lag1_valid_scaled, lag3_valid_scaled, lag7_valid_scaled, month_features_valid_scaled, season_features_valid_scaled), h_next_valid_scaled) ) valid_dataset = valid_dataset.batch(32) # 初始化训练历史记录列表 train_data_loss_history = [] physics_loss_history = [] valid_data_loss_history = [] train_metrics_history = [] valid_metrics_history = [] # 早停机制参数 patience = int(self.epochs_var.get() / 3) min_delta = 1e-4 best_valid_loss = float('inf') wait = 0 best_epoch = 0 best_weights = None start_time = time.time() # 自定义训练循环 for epoch in range(self.epochs_var.get()): # 获取当前学习率 current_lr = optimizer.learning_rate.numpy() # 训练阶段 epoch_train_data_loss = [] epoch_physics_loss = [] train_pred_scaled = [] # 修改后的解包方式 # 在训练循环中: for step, (inputs, h_next_batch) in enumerate(train_dataset): t_batch, h_batch, dt_batch, lag1_batch, lag3_batch, lag7_batch, month_feats_batch, season_feats_batch = inputs with tf.GradientTape() as tape: # 预测下一时刻水位 h_pred = self.model([ t_batch, h_batch, dt_batch, lag1_batch, lag3_batch, lag7_batch, month_feats_batch, season_feats_batch ], training=True) data_loss = tf.reduce_mean(tf.square(h_next_batch - h_pred)) # 计算物理损失 physics_loss = self.model.physics_loss(t_batch, h_batch, dt_batch, training=True) # 使用设置的物理损失权重 current_physics_weight = self.physics_weight_var.get() # 添加L2正则化损失 l2_loss = tf.reduce_sum(self.model.losses) # 总损失 loss = data_loss + current_physics_weight * physics_loss + l2_loss grads = tape.gradient(loss, self.model.trainable_variables) optimizer.apply_gradients(zip(grads, self.model.trainable_variables)) epoch_train_data_loss.append(data_loss.numpy()) epoch_physics_loss.append(physics_loss.numpy()) train_pred_scaled.append(h_pred.numpy()) # 合并训练预测值 train_pred_scaled = np.concatenate(train_pred_scaled, axis=0) train_pred_true = self.scaler_h.inverse_transform(train_pred_scaled) train_metrics = self.calculate_metrics( y_true=h_next_train_true.flatten(), y_pred=train_pred_true.flatten() ) train_metrics_history.append(train_metrics) # 验证阶段 epoch_valid_data_loss = [] valid_pred_scaled = [] for (inputs, h_v_next_batch) in valid_dataset: t_v_batch, h_v_batch, dt_v_batch, lag1_v_batch, lag3_v_batch, lag7_v_batch, month_feats_v_batch, season_feats_v_batch = inputs h_v_pred = self.model([ t_v_batch, h_v_batch, dt_v_batch, lag1_v_batch, lag3_v_batch, lag7_v_batch, month_feats_v_batch, season_feats_v_batch ], training=False) valid_data_loss = tf.reduce_mean(tf.square(h_v_next_batch - h_v_pred)) epoch_valid_data_loss.append(valid_data_loss.numpy()) valid_pred_scaled.append(h_v_pred.numpy()) # 合并验证预测值(归一化后) valid_pred_scaled = np.concatenate(valid_pred_scaled, axis=0) # 反归一化得到原始预测值 valid_pred_true = self.scaler_h.inverse_transform(valid_pred_scaled) # 计算验证集指标(使用原始真实值和预测值) valid_metrics = self.calculate_metrics( y_true=h_next_valid_true.flatten(), y_pred=valid_pred_true.flatten() ) valid_metrics_history.append(valid_metrics) # 计算平均损失 avg_train_data_loss = np.mean(epoch_train_data_loss) avg_physics_loss = np.mean(epoch_physics_loss) avg_valid_data_loss = np.mean(epoch_valid_data_loss) # 记录损失 train_data_loss_history.append(avg_train_data_loss) physics_loss_history.append(avg_physics_loss) valid_data_loss_history.append(avg_valid_data_loss) # 早停机制逻辑 current_valid_loss = avg_valid_data_loss # 早停机制逻辑 current_valid_loss = avg_valid_data_loss if current_valid_loss < best_valid_loss - min_delta: best_valid_loss = current_valid_loss best_epoch = epoch + 1 wait = 0 best_weights = self.model.get_weights() else: wait += 1 if wait >= patience: self.status_var.set(f"触发早停!最佳轮次: {best_epoch},最佳验证损失: {best_valid_loss:.4f}") if best_weights is not None: self.model.set_weights(best_weights) break # 确保在此处退出循环 # 更新状态(添加当前学习率显示) if epoch % 1 == 0: # 提取当前训练/验证的关键指标 train_rmse = train_metrics['RMSE'] valid_rmse = valid_metrics['RMSE'] train_r2 = train_metrics['R2'] valid_r2 = valid_metrics['R2'] elapsed = time.time() - start_time self.status_var.set( f"训练中 | 轮次: {epoch + 1}/{self.epochs_var.get()} | " f"学习率: {current_lr:.6f} | " f"训练RMSE: {train_rmse:.4f} | 验证RMSE: {valid_rmse:.4f} | " f"训练R²: {train_r2:.4f} | 验证R²: {valid_r2:.4f} | " f"k1: {self.model.k1.numpy():.6f}, k2: {self.model.k2.numpy():.6f} | 时间: {elapsed:.1f}秒 | 早停等待: {wait}/{patience}" ) self.root.update() # 绘制损失曲线 self.loss_ax.clear() epochs_range = range(1, len(train_data_loss_history) + 1) self.loss_ax.plot(epochs_range, train_data_loss_history, 'b-', label='训练数据损失') self.loss_ax.plot(epochs_range, physics_loss_history, 'r--', label='物理损失') self.loss_ax.plot(epochs_range, valid_data_loss_history, 'g-.', label='验证数据损失') self.loss_ax.set_title('PINNs训练与验证损失') self.loss_ax.set_xlabel('轮次') self.loss_ax.set_ylabel('损失', rotation=0) self.loss_ax.legend() self.loss_ax.grid(True, alpha=0.3) self.loss_ax.set_yscale('log') self.loss_canvas.draw() # 训练完成提示 elapsed = time.time() - start_time if wait >= patience: completion_msg = ( f"早停触发 | 最佳轮次: {best_epoch} | 最佳验证损失: {best_valid_loss:.4f} | " f"最佳验证RMSE: {valid_metrics_history[best_epoch - 1]['RMSE']:.4f} | " f"总时间: {elapsed:.1f}秒" ) else: completion_msg = ( f"训练完成 | 总轮次: {self.epochs_var.get()} | " f"最终训练RMSE: {train_metrics_history[-1]['RMSE']:.4f} | " f"最终验证RMSE: {valid_metrics_history[-1]['RMSE']:.4f} | " f"最终训练R²: {train_metrics_history[-1]['R2']:.4f} | " f"最终验证R²: {valid_metrics_history[-1]['R2']:.4f} | " f"总时间: {elapsed:.1f}秒" ) # 保存训练历史 self.train_history = { 'train_data_loss': train_data_loss_history, 'physics_loss': physics_loss_history, 'valid_data_loss': valid_data_loss_history, 'train_metrics': train_metrics_history, 'valid_metrics': valid_metrics_history } # 保存学习到的物理参数 self.learned_params = { "k1": self.model.k1.numpy(), "k2": self.model.k2.numpy(), "alpha": self.model.alpha.numpy(), "beta": self.model.beta.numpy() } self.status_var.set(completion_msg) messagebox.showinfo("训练完成", f"PINNs模型训练成功完成!\n{completion_msg}") except Exception as e: messagebox.showerror("训练错误", f"模型训练失败:\n{str(e)}") self.status_var.set("训练失败") def predict(self): """使用PINNs模型进行递归预测(带Teacher Forcing和蒙特卡洛Dropout)""" if self.model is None: messagebox.showwarning("警告", "请先训练模型") return if self.test_df is None: messagebox.showwarning("警告", "请先选择测试集文件") return try: self.status_var.set("正在生成预测(使用Teacher Forcing和MC Dropout)...") self.root.update() # 预处理测试数据 - 归一化 t_test = self.test_df['days'].values.reshape(-1, 1) t_test_scaled = self.scaler_t.transform(t_test).astype(np.float32) dt_test = self.test_df['dt'].values.reshape(-1, 1) dt_test_scaled = self.scaler_dt.transform(dt_test).astype(np.float32) h_test = self.test_df['水位'].values.reshape(-1, 1) h_test_scaled = self.scaler_h.transform(h_test).astype(np.float32) # ===== 新增:归一化测试集的滞后特征 ===== lag1_test = self.test_df['水位_lag1'].values.reshape(-1, 1) lag1_test_scaled = self.scaler_lag1.transform(lag1_test).astype(np.float32) lag3_test = self.test_df['水位_lag3'].values.reshape(-1, 1) lag3_test_scaled = self.scaler_lag3.transform(lag3_test).astype(np.float32) lag7_test = self.test_df['水位_lag7'].values.reshape(-1, 1) lag7_test_scaled = self.scaler_lag7.transform(lag7_test).astype(np.float32) # ===== 新增:归一化测试集的周期性特征 ===== month_sin_test = self.test_df['month_sin'].values.reshape(-1, 1) month_cos_test = self.test_df['month_cos'].values.reshape(-1, 1) month_features_test = np.hstack([month_sin_test, month_cos_test]) month_features_test_scaled = self.scaler_month.transform(month_features_test).astype(np.float32) season_sin_test = self.test_df['season_sin'].values.reshape(-1, 1) season_cos_test = self.test_df['season_cos'].values.reshape(-1, 1) season_features_test = np.hstack([season_sin_test, season_cos_test]) season_features_test_scaled = self.scaler_season.transform(season_features_test).astype(np.float32) # 改进的递归预测参数 n = len(t_test) mc_iterations = 100 adaptive_forcing = True # 存储蒙特卡洛采样结果 mc_predictions_scaled = np.zeros((mc_iterations, n, 1), dtype=np.float32) # 进行多次蒙特卡洛采样 for mc_iter in range(mc_iterations): predicted_scaled = np.zeros((n, 1), dtype=np.float32) predicted_scaled[0] = h_test_scaled[0] # 第一个点使用真实值 # 递归预测(带自适应教师强制) for i in range(1, n): # 自适应教师强制:后期阶段增加真实值使用频率 if adaptive_forcing: # 前期70%概率使用真实值,后期提高到90% teacher_forcing_prob = 0.7 + 0.2 * min(1.0, i / (0.7 * n)) else: teacher_forcing_prob = 0.7 # 决定使用真实值还是预测值 use_actual = np.random.rand() < teacher_forcing_prob if use_actual and i < n - 1: # 不能使用未来值 h_prev = h_test_scaled[i - 1:i] else: h_prev = predicted_scaled[i - 1:i] t_prev = t_test_scaled[i - 1:i] dt_i = dt_test_scaled[i:i + 1] # 准备输入特征 inputs = ( t_test_scaled[i - 1:i], # 时间 h_prev, # 当前水位 dt_test_scaled[i:i + 1], # 时间步长 lag1_test_scaled[i - 1:i], lag3_test_scaled[i - 1:i], lag7_test_scaled[i - 1:i], month_features_test_scaled[i - 1:i], season_features_test_scaled[i - 1:i] ) # 直接传递整个输入元组 h_pred = self.model(inputs, training=True) # 物理模型预测值(用于约束) k1 = self.learned_params['k1'] k2 = self.learned_params['k2'] alpha = self.learned_params['alpha'] beta = self.learned_params['beta'] # 物理方程预测 exponent = - (k1 + k2 * h_prev) * dt_i decay_term = h_prev * np.exp(exponent) external_term = alpha * (1 - np.exp(-beta * dt_i)) physics_pred = decay_term + external_term # 混合预测:神经网络预测与物理模型预测加权平均 physics_weight = 0.3 # 物理模型权重 final_pred = physics_weight * physics_pred + (1 - physics_weight) * h_pred.numpy() predicted_scaled[i] = final_pred[0][0] mc_predictions_scaled[mc_iter] = predicted_scaled # 计算预测统计量 mean_pred_scaled = np.mean(mc_predictions_scaled, axis=0) std_pred_scaled = np.std(mc_predictions_scaled, axis=0) # 反归一化结果 predictions = self.scaler_h.inverse_transform(mean_pred_scaled) uncertainty = self.scaler_h.inverse_transform(std_pred_scaled) * 1.96 # 95%置信区间 actual_values = h_test test_time = self.test_df.index # 清除现有图表 self.ax.clear() # 计算合理的y轴范围 - 基于数据集中区域 # 获取实际值和预测值的中位数 median_val = np.median(actual_values) # 计算数据的波动范围(标准差) data_range = np.std(actual_values) * 4 # 4倍标准差覆盖大部分数据 # 设置y轴范围为中心值±数据波动范围 y_center = median_val y_half_range = max(data_range, 10) # 确保最小范围为20个单位 y_min_adjusted = y_center - y_half_range y_max_adjusted = y_center + y_half_range # 确保范围不为零 if y_max_adjusted - y_min_adjusted < 1: y_min_adjusted -= 5 y_max_adjusted += 5 # 绘制结果(带置信区间) self.ax.plot(test_time, actual_values, 'b-', label='真实值', linewidth=2) self.ax.plot(test_time, predictions, 'r--', label='预测均值', linewidth=2) self.ax.fill_between( test_time, (predictions - uncertainty).flatten(), (predictions + uncertainty).flatten(), color='orange', alpha=0.3, label='95%置信区间' ) # 设置自动调整的y轴范围 self.ax.set_ylim(y_min_adjusted, y_max_adjusted) self.ax.set_title('大坝渗流水位预测(PINNs with MC Dropout)') self.ax.set_xlabel('时间') self.ax.set_ylabel('测压管水位', rotation=0) self.ax.legend(loc='best') # 自动选择最佳位置 # 优化时间轴刻度 self.ax.xaxis.set_major_locator(mdates.YearLocator()) self.ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y')) self.ax.xaxis.set_minor_locator(mdates.MonthLocator(interval=2)) self.ax.grid(which='minor', axis='x', linestyle=':', color='gray', alpha=0.3) self.ax.grid(which='major', axis='y', linestyle='-', color='lightgray', alpha=0.5) self.ax.tick_params(axis='x', which='major', rotation=0, labelsize=9) self.ax.tick_params(axis='x', which='minor', length=2) # 计算评估指标(排除第一个点) eval_actual = actual_values[1:].flatten() eval_pred = predictions[1:].flatten() self.evaluation_metrics = self.calculate_metrics(eval_actual, eval_pred) # 添加不确定性指标 avg_uncertainty = np.mean(uncertainty) max_uncertainty = np.max(uncertainty) self.evaluation_metrics['Avg Uncertainty'] = avg_uncertainty self.evaluation_metrics['Max Uncertainty'] = max_uncertainty metrics_text = ( f"MSE: {self.evaluation_metrics['MSE']:.4f} | " f"RMSE: {self.evaluation_metrics['RMSE']:.4f} | " f"MAE: {self.evaluation_metrics['MAE']:.4f} | " f"MAPE: {self.evaluation_metrics['MAPE']:.2f}% | " f"R²: {self.evaluation_metrics['R2']:.4f}\n" f"平均不确定性: {avg_uncertainty:.4f} | 最大不确定性: {max_uncertainty:.4f}" ) self.metrics_var.set(metrics_text) # 在图表上添加指标 self.ax.text( 0.5, 1.05, metrics_text, transform=self.ax.transAxes, ha='center', fontsize=8, bbox=dict(facecolor='white', alpha=0.8) ) params_text = ( f"物理参数: k1={self.learned_params['k1']:.4f}, " f"k2={self.learned_params['k2']:.4f}, " f"alpha={self.learned_params['alpha']:.4f}, " f"beta={self.learned_params['beta']:.4f} | " f"Teacher Forcing概率: {teacher_forcing_prob}" ) self.ax.text( 0.5, 1.12, params_text, transform=self.ax.transAxes, ha='center', fontsize=8, bbox=dict(facecolor='white', alpha=0.8) ) # 调整布局 plt.tight_layout(pad=2.0) self.canvas.draw() # 保存预测结果 self.predictions = predictions self.uncertainty = uncertainty self.actual_values = actual_values self.test_time = test_time self.mc_predictions = mc_predictions_scaled self.status_var.set(f"预测完成(MC Dropout采样{mc_iterations}次)") except Exception as e: messagebox.showerror("预测错误", f"预测失败:\n{str(e)}") self.status_var.set("预测失败") import traceback traceback.print_exc() def save_results(self): """保存预测结果和训练历史数据""" if not hasattr(self, 'predictions') or not hasattr(self, 'train_history'): messagebox.showwarning("警告", "请先生成预测结果并完成训练") return # 选择保存路径 save_path = filedialog.asksaveasfilename( defaultextension=".xlsx", filetypes=[("Excel文件", "*.xlsx"), ("所有文件", "*.*")], title="保存结果" ) if not save_path: return try: # 1. 创建预测结果DataFrame result_df = pd.DataFrame({ '时间': self.test_time, '实际水位': self.actual_values.flatten(), '预测水位': self.predictions.flatten() }) # 2. 创建评估指标DataFrame metrics_df = pd.DataFrame([self.evaluation_metrics]) # 3. 创建训练历史DataFrame history_data = { '轮次': list(range(1, len(self.train_history['train_data_loss']) + 1)), '训练数据损失': self.train_history['train_data_loss'], '物理损失': self.train_history['physics_loss'], '验证数据损失': self.train_history['valid_data_loss'] } # 添加训练集指标 for metric in ['MSE', 'RMSE', 'MAE', 'MAPE', 'R2']: history_data[f'训练集_{metric}'] = [item[metric] for item in self.train_history['train_metrics']] # 添加验证集指标 for metric in ['MSE', 'RMSE', 'MAE', 'MAPE', 'R2']: history_data[f'验证集_{metric}'] = [item[metric] for item in self.train_history['valid_metrics']] history_df = pd.DataFrame(history_data) # 保存到Excel with pd.ExcelWriter(save_path) as writer: result_df.to_excel(writer, sheet_name='预测结果', index=False) metrics_df.to_excel(writer, sheet_name='评估指标', index=False) history_df.to_excel(writer, sheet_name='训练历史', index=False) # 保存图表 chart_path = os.path.splitext(save_path)[0] + "_chart.png" self.fig.savefig(chart_path, dpi=300) # 保存损失曲线图 loss_path = os.path.splitext(save_path)[0] + "_loss.png" self.loss_fig.savefig(loss_path, dpi=300) self.status_var.set(f"结果已保存至: {os.path.basename(save_path)}") messagebox.showinfo("保存成功", f"预测结果和图表已保存至:\n" f"主文件: {save_path}\n" f"预测图表: {chart_path}\n" f"损失曲线: {loss_path}") except Exception as e: messagebox.showerror("保存错误", f"保存结果失败:\n{str(e)}") def reset(self): # 重置归一化器 self.scaler_t = MinMaxScaler(feature_range=(0, 1)) self.scaler_h = MinMaxScaler(feature_range=(0, 1)) self.scaler_dt = MinMaxScaler(feature_range=(0, 1)) """重置程序状态""" self.train_df = None self.test_df = None self.model = None self.train_file_var.set("") self.test_file_var.set("") # 清除训练历史 if hasattr(self, 'train_history'): del self.train_history # 清除图表 if hasattr(self, 'ax'): self.ax.clear() if hasattr(self, 'loss_ax'): self.loss_ax.clear() # 重绘画布 if hasattr(self, 'canvas'): self.canvas.draw() if hasattr(self, 'loss_canvas'): self.loss_canvas.draw() # 清除状态 self.status_var.set("已重置,请选择新数据") # 清除预测结果 if hasattr(self, 'predictions'): del self.predictions # 清除指标文本 if hasattr(self, 'metrics_var'): self.metrics_var.set("") messagebox.showinfo("重置", "程序已重置,可以开始新的分析") if __name__ == "__main__": root = tk.Tk() app = DamSeepageModel(root) root.mainloop() 检查错误并改正
07-28
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值