5.波士顿房价预测(KNN,决策树,线性回归)

1. 机器学习中的任务分类

  • 有监督学习(supervised):有特征也有标签
    • 分类问题
      • classification
      • 预测离散量
    • 回归问题
      • regression
      • 预测连续量
  • 无监督学习(unsupervised):无监督学习
    • 聚类算法
      • KMeans
    • 降维算法
      • PCA
  • 自监督学习:
    • 大模型预训练,使用自监督
    • 输入文本,自己挖空填空

2. 波士顿房价预测

2.1 分析数据

  • 观察数据,最后一列代表房价,是连续量,所以房价预测是一个回归问题。
    24.00
    21.60
    34.70
    33.40
    36.20
    28.70
    22.90
    27.10

2.2 比较 MAE 和 MSE

  • 这里模型的评估与分类问题不同,此处采用的是平均方差误差
  • MAE 平均绝对误差 指的是计算 (预测值-真实值)平均值 ,这种方法可以直观地感受到误差的大小,也有实际的物理意义,更便于理解。但是绝对值会导致函数出现 不可导点 ,这将会给后续的计算带来很大麻烦;
  • MSE 平均平方误差 就是 计算 (预测值-真实值)平方平均值, 这样得到的结果并无实际意义,但是解决了不可导点的问题,从计算角度来讲,更容易求导,简化了计算。
  • 虽然我们无法从 MSE 的数值上直接得到有效信息,但是却可以通过比较来评估模型的好坏,信息是在比较中产生的。

2.2 代码

  • 加载和拆分数据
X=[]
y=[]
with open('housing.data',mode='r',encoding='utf8') as f:
    for line in f:
        line = line.strip()
        if line:
            line = line.split(' ')
            line = [float(ele) for ele in line if ele]
            features=line[:-1]
            label=line[-1]
            X.append(f
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MechMaster

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值