2.1 一阶逻辑基本概念
如果没有事先给出一个个体域,都以全总个体域为个体域。于是,引入一个新的谓词M(x)M(x)M(x):
- 全称量词
∀x(M(x)→F(x))\forall x(M(x) \to F(x) )∀x(M(x)→F(x)) - 存在量词
∃x(M(x)∧F(x))\exists x(M(x) \land F(x) )∃x(M(x)∧F(x))
当个体域为有限集时,D={ a1,a2,...,an}D=\{a_1,a_2,...,a_n\}D={ a1,a2,...,an}
∀xA(x)⇔A(a1)∧A(a1)∧A(a2)...∧A(an)\forall xA(x) \Leftrightarrow A(a1) \land A(a_1) \land A(a_2)...\land A(a_n)∀xA(x)⇔A(a1)∧A(a1)∧A(a2)...∧A(an)
∃A(x)⇔A(a1)∨A(a1)∨A(a2)...∨A(an)\exists A(x) \Leftrightarrow A(a1) \lor A(a_1) \lor A(a_2).