如何搭建pytorch环境

本文详细介绍了如何使用conda创建并配置PyTorch GPU环境,包括创建虚拟环境、安装常用库、选择合适的PyTorch版本及CUDA工具包,以及如何验证安装是否成功。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.conda创建虚拟环境pytorch_gpu

conda create -n pytorch_gpu python=3.6

创建虚拟环境还是相对较快的,它会自动为本环境安装一些基本的库,等待时间无需很长,成功之后界面如下所示:
在这里插入图片描述

2.切换到pytorch环境

使用如下命令,切换到我们刚刚创建好的pytorch虚拟环境,这样我们避免与其它python环境之间的干扰。

conda activate pytorch_gpu

切换成功之后就会看到在路径前边显示我们已经进入该虚拟环境。
在这里插入图片描述

3.安装几个常用库(也可暂时不安)

conda install pandas jupyter notebook

4.安装pytorch

4.1进入官网查看要下载的版本

查看对应的版本,这里是官方链接:
在这里插入图片描述

4.2 根据系 统信息及cuda版本选择对应toolkit

这里最主要的是那个CUDA的版本,此处我选择的是10.1,是因为我的电脑的 cuda版本信息就是这样的。具体的查看方法可在4.5节查阅。

4.3复制上图中最后一行代码到pytorch环境终端

conda install pytorch torchvision cudatoolkit=10.1 -c pytorch

这里是下载过程截图:
在这里插入图片描述
但是在下载过程中torchvision以及pytorch没有下载成功,在这里插入图片描述
因为这是去其官网下载,下载速度很慢,在上图中我们也可以看出是因为网络错误,网络上也有几种其他的方法,此处我没去验证,我还是让电脑重新下载的,等待时间挺长的,但是因为是在晚上下载的,一早起来就好了

在这里插入图片描述

4.4 验证pytorch是否安装成功

此时直接输入 python,即可成功进入:
在这里插入图片描述
而后输入如下指令,查看torch是否安装成功

>>> import torch
>>> x=torch.randn(4,4)
>>> print(x)

正常情况下是出现这个界面的:
在这里插入图片描述
验证完成之后,可以quit()保存退出。

4.5 如何查看自己电脑cuda版本

4.5.1 windows如何查看

NVDIA控制面板–>帮助–>系统信息
在这里插入图片描述
组件–>NVCUDA.DLL 可以查看CUDA版本
在这里插入图片描述
这里我的显示是10.1,所以我上边下载的版本也是10.1的,这里的版本要对应上,否则会出现问题。

4.5.2 linux如何查看

打开终端,输入:nvcc -V

nvcc -V

或者如下方式查看:
CUDA:

cat /usr/local/cuda/version.txt

cudnn:

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

2022年4月27日更新

新的pytorch_gpu版本在按照4.3节安装的时候,如果你的电脑是10.1的,则会看到没有如下
在这里插入图片描述
此时不支持 10.1 的和 10.2 的,所以即使你按照上边的命令成功安装了pytorch,那么在执行的时候也会给报错 AssertionError: Torch not compiled with CUDA enabled ,其实本质上就是此时安装的pytorch版本不兼容本地的显卡驱动,查阅资料得知执行以下命令更换适应cuda 10.1的pytorch版本即可:

pip install torch==1.7.0+cu101 torchvision==0.8.1+cu101 torchaudio===0.7.0 -f https://download.pytorch.org/whl/torch_stable.html

执行过后,卸载掉了高版本的pytorch,安装低版本的既可成功使用电脑的gpu啦。

引用和介绍了torch.Tensor()和torch.tensor()的区别。torch.Tensor()是一个类,而torch.tensor()是一个函数。torch.Tensor()可以接受多种类型的数据作为输入,包括list、tuple、array、scalar等。而torch.tensor()可以从数据输入中做拷贝,并根据原始数据类型生成相应的torch.LongTensor、torch.FloatTensor、torch.DoubleTensor。举例来说,当输入是[1, 2]时,torch.tensor()将生成一个torch.LongTensor,而当输入是[1., 2.]时,torch.tensor()将生成一个torch.FloatTensor。同时,可以使用torch.tensor()将numpy数组转换为相应类型的torch tensor。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [torch.tensor和torch.Tensor的区别](https://blog.youkuaiyun.com/qq_36930266/article/details/104602792)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [torch.Tensor和torch.tensor的区别](https://blog.youkuaiyun.com/weixin_42018112/article/details/91383574)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王延凯的博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值