贝叶斯理论:
贝叶斯python实现:
from sklearn.naive_bayes import GaussianNB
from sklearn.datasets import load_iris
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2)
clf = GaussianNB().fit(X_train, y_train)
print ("Classifier Score:", clf.score(X_test, y_test))
import math
class NaiveBayes:
def __init__(self):
self.model = None
# 数学期望
@staticmethod
def mean(X):
"""计算均值
Param: X : list or np.ndarray
Return:
avg : float
"""
avg = 0.0
# ========= show me your code ==================
avg = np.mean(X)
# ========= show me your code ==================
return avg
# 标准差(方差)
def stdev(self, X):
"""计算标准差
Param: X : list or np.ndarray
Return:
res : float
"""
res = 0.0
# ========= show me your code ==================
res = math.sqrt(np.mean(np.square(X-self.mean(X))))
# ========= show me your code ==================
return res
# 概率密度函数
def gaussian_probability(self, x, mean, stdev):
"""根据均值和标注差计算x符号该高斯分布的概率
Parameters:
----------
x : 输入
mean : 均值
stdev : 标准差
Return:
res : float, x符合的概率值
"""
res = 0.0
# ========= show me your code ==================
exp = math.exp(-math.pow(x - mean, 2) / 2 * math.pow(stdev, 2))
res = (1 / (math.sqrt(2 * math.pi) * stdev)) * exp
# ========= show me your code ==================
return res
# 处理X_train
def summarize(self, train_data):
"""计算每个类目下对应数据的均值和标准差
Param: train_data : list
Return : [mean, stdev]
"""
summaries = [0.0, 0.0]
# ========= show me your code ==================
summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)]
# ========= show me your code ==================
return summaries
# 分类别求出数学期望和标准差
def fit(self, X, y):
labels = list(set(y))
data = {label: [] for label in labels}
for f, label in zip(X, y):
data[label].append(f)
self.model = {
label: self.summarize(value) for label, value in data.items()
}
return 'gaussianNB train done!'
# 计算概率
def calculate_probabilities(self, input_data):
"""计算数据在各个高斯分布下的概率
Paramter:
input_data : 输入数据
Return:
probabilities : {label : p}
"""
# summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]}
# input_data:[1.1, 2.2]
probabilities = {}
# ========= show me your code ==================
for label, value in self.model.items():
probabilities[label] = 1
# here
for i in range(len(value)):
mean, stdev = value[i]
probabilities[label] *= self.gaussian_probability(input_data[i], mean, stdev)
# ========= show me your code ==================
return probabilities
# 类别
def predict(self, X_test):
# {0.0: 2.9680340789325763e-27, 1.0: 3.5749783019849535e-26}
label = sorted(self.calculate_probabilities(X_test).items(), key=lambda x: x[-1])[-1][0]
return label
# 计算得分
def score(self, X_test, y_test):
right = 0
for X, y in zip(X_test, y_test):
label = self.predict(X)
if label == y:
right += 1
return right / float(len(X_test))
优缺点
优点
- 朴素贝叶斯模型有稳定的分类效率。
- 对小规模的数据表现很好,能处理多分类任务,适合增量式训练,尤其是数据量超出内存时,可以一批批的去增量训练。
- 对缺失数据不太敏感,算法也比较简单,常用于文本分类。
缺点:
- 理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型给定输出类别的情况下,假设属性之间相互独立,这个假设在实际应用中往往是不成立的,在属性个数比较多或者属性之间相关性较大时,分类效果不好。而在属性相关性较小时,朴素贝叶斯性能最为良好。对于这一点,有半朴素贝叶斯之类的算法通过考虑部分关联性适度改进。
- 需要知道先验概率,且先验概率很多时候取决于假设,假设的模型可以有很多种,因此在某些时候会由于假设的先验模型的原因导致预测效果不佳。
- 由于我们是通过先验和数据来决定后验的概率从而决定分类,所以分类决策存在一定的错误率。
- 对输入数据的表达形式很敏感。
零概率问题如何解决?
零概率问题,就是在计算实例的概率时,如果某个量x,在观察样本库(训练集)中没有出现过,会导致整个实例的概率结果是0.
在实际的模型训练过程中,可能会出现零概率问题(因为先验概率和反条件概率是根据训练样本算的,但训练样本数量不是无限的,所以可能出现有的情况在实际中存在,但在训练样本中没有,导致为0的概率值,影响后面后验概率的计算),即便可以继续增加训练数据量,但对于有些问题来说,数据怎么增多也是不够的。这时我们说模型是不平滑的,我们要使之平滑,一种方法就是将训练(学习)的方法换成贝叶斯估计。
参考文献:
西瓜书 https://samanthachen.github.io/2016/08/05/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0_%E5%91%A8%E5%BF%97%E5%8D%8E_%E7%AC%94%E8%AE%B07/
https://www.jianshu.com/p/f1d3906e4a3e
https://zhuanlan.zhihu.com/p/66117273
https://zhuanlan.zhihu.com/p/39780650
https://blog.youkuaiyun.com/zrh_优快云/article/details/81007851