# -*- coding: utf-8 -*-
"""
Created on Tue Oct 31 09:56:19 2017
@author: czw
"""
#导入包
import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestRegressor,BaggingRegressor
from nltk.stem.snowball import SnowballStemmer
import os
#####导入数据######
os.chdir(r'D:\夏俊红\数据分析\Home Depot Product Search Relevance')
df_train = pd.read_csv('train.csv',encoding="ISO-8859-1")
df_test = pd.read_csv('test.csv',encoding="ISO-8859-1")
df_desc = pd.read_csv('product_descriptions.csv')
df_all = pd.concat((df_train,df_test),axis = 0,ignore_index = True)
df_all = pd.merge(df_all,df_desc,how = 'left',on = 'product_uid')
stemmer = SnowballStemmer('english') #词干的提取
def str_stemmer(s):
return " ".join([stemmer.stem(word) for word in s.lower().split()])
#计算关键词的有效性
def str_common_word(str1, str2):
return sum(int(str2.find(word)>=0) for word in str1.split())
df_all['search_term'] = df_all['search_term'].map(lambda x:str_stemmer(x))
df_all['product_title'] = df_all['product_title'].map(lambda x:str_stemmer(x))
df_all['product_description'] = df_all['product_description'].map(lambda x:str_stemmer(x))
####进阶版文本特征
import Levenshtein
Levenshtein.ratio('hello','hello world')
df_all['dist_in_title'] = df_all.apply(lambda x:Levenshtein.ratio(x['search_term'],x['product_title']), axis=1)
df_all['dist_in_desc'] = df_all.apply(lambda x:Levenshtein.ratio(x['search_term'],x['product_description']), axis=1)
df_all['all_texts']=df_all['product_title'] + ' . ' + df_all['product_description'] + ' . '
from gensim.utils import tokenize
from gensim.corpora.dictionary import Dictionary
dictionary = Dictionary(list(tokenize(x,errors = 'ignore')) for x in df_all['all_texts'].values)
##建立221877词语的语料库
class MyCorpus(object):
def __iter__(self):
for x in df_all['all_texts'].values:
yield dictionary.doc2bow(list(tokenize(x, errors='ignore')))
corpus = MyCorpuus()
from gensim.models.tfidfmodel import TfidfModel
tfidf = TfidfModel(corpus)
tfidf[dictionary.doc2bow(list(tokenize('hello world, good morning', errors='ignore')))]
from gensim.similarities import MatrixSimilarity
# 先把刚刚那句话包装成一个方法
def to_tfidf(text):
res = tfidf[dictionary.doc2bow(list(tokenize(text, errors='ignore')))]
return res
# 然后,我们创造一个cosine similarity的比较方法
def cos_sim(text1, text2):
tfidf1 = to_tfidf(text1)
tfidf2 = to_tfidf(text2)
index = MatrixSimilarity([tfidf1],num_features=len(dictionary))
sim = index[tfidf2]
# 本来sim输出是一个array,我们不需要一个array来表示,
# 所以我们直接cast成一个float
return float(sim[0])
df_all['tfidf_cos_sim_in_title'] = df_all.apply(lambda x: cos_sim(x['search_term'], x['product_title']), axis=1)
df_all['tfidf_cos_sim_in_desc'] = df_all.apply(lambda x: cos_sim(x['search_term'], x['product_description']), axis=1)
##Word2Vec
import nltk
# nltk也是自带一个强大的句子分割器。
tokenizer = nltk.data.load('tokenizers/punkt/english.pickle')
tokenizer.tokenize(df_all['all_texts'].values[0])
sentences = [tokenizer.tokenize(x) for x in df_all['all_texts'].values]
sentences = [y for x in sentences for y in x]
from nltk.tokenize import word_tokenize
w2v_corpus = [word_tokenize(x) for x in sentences]
from gensim.models.word2vec import Word2Vec
model = Word2Vec(w2v_corpus, size=128, window=5, min_count=5, workers=4)
vocab = model.wv.vocab
# 得到任意text的vector
def get_vector(text):
# 建立一个全是0的array
res =np.zeros([128])
count = 0
for word in word_tokenize(text):
if word in vocab:
res += model[word]
count += 1
return res/count
print(get_vector('life is like a box of chocolate'))
from scipy import spatial
# 这里,我们再玩儿个新的方法,用scipy的spatial
def w2v_cos_sim(text1, text2):
try:
w2v1 = get_vector(text1)
w2v2 = get_vector(text2)
sim = 1 - spatial.distance.cosine(w2v1, w2v2)
return float(sim)
except:
return float(0)
df_all['w2v_cos_sim_in_title'] = df_all.apply(lambda x: w2v_cos_sim(x['search_term'], x['product_title']), axis=1)
df_all['w2v_cos_sim_in_desc'] = df_all.apply(lambda x: w2v_cos_sim(x['search_term'], x['product_description']), axis=1)
df_all = df_all.drop(['search_term','product_title','product_description','all_texts'],axis=1)
df_train = df_all.loc[df_train.index]
df_test = df_all.loc[df_test.index]
test_ids = df_test['id']
y_train = df_train['relevance'].values
X_train = df_train.drop(['id','relevance'],axis=1).values
X_test = df_test.drop(['id','relevance'],axis=1).values
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import cross_val_score
params = [1,3,5,6,7,8,9,10]
test_scores = []
for param in params:
clf = RandomForestRegressor(n_estimators=30, max_depth=param)
test_score = np.sqrt(-cross_val_score(clf, X_train, y_train, cv=5, scoring='neg_mean_squared_error'))
test_scores.append(np.mean(test_score))
import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(params, test_scores)
plt.title("Param vs CV Error");
rf = RandomForestRegressor(n_estimators=30, max_depth=6)
rf.fit(X_train, y_train)
y_pred = rf.predict(X_test)
pd.DataFrame({"id": test_ids, "relevance": y_pred}).to_csv('submission.csv',index=False)
关键词搜索版本2
最新推荐文章于 2025-08-16 17:02:07 发布