我们只讨论定解问题是线性的情况,处理的原则是利用叠加原理,把非齐次边界条件问题转化为另一未知函数的齐次边界条件问题。
(一) 一般处理方法
\quad
例1 自由振动问题
u
t
t
−
a
2
u
x
x
=
0
u
∣
x
=
0
=
μ
(
t
)
,
u
∣
x
=
l
=
v
(
t
)
,
u
∣
t
=
0
=
φ
(
x
)
,
u
t
∣
t
=
0
=
ψ
(
x
)
.
u_{tt}-a^2u_{xx}=0 \\ u|_{x=0}=\mu(t),u|_{x=l}=v(t),\\u|_{t=0}=\varphi(x),u_t|t=0=\psi(x).
utt−a2uxx=0u∣x=0=μ(t),u∣x=l=v(t),u∣t=0=φ(x),ut∣t=0=ψ(x).边界条件(第二个等式)是非齐次的。
\quad
选取一个函数
v
(
x
,
t
)
v(x,t)
v(x,t),使其满足非齐次边界条件,为了简单起见,不妨取
v
(
x
,
t
)
v(x,t)
v(x,t)为x的线性函数,即
v
(
x
,
t
)
=
A
(
t
)
x
+
B
(
t
)
.
v(x,t)=A(t)x+B(t).
v(x,t)=A(t)x+B(t).将此式代入到非齐次边界条件中,解得
v
(
x
,
t
)
=
[
v
(
t
)
−
μ
(
t
)
]
l
x
+
μ
(
t
)
v(x,t)=\frac{[v(t)-\mu(t)]}{l}x+\mu(t)
v(x,t)=l[v(t)−μ(t)]x+μ(t)利用叠加原理,令
u
(
x
,
t
)
=
v
(
x
,
t
)
+
w
(
x
,
t
)
u(x,t)=v(x,t)+w(x,t)
u(x,t)=v(x,t)+w(x,t)将上面的两个式子代入定解问题中,得到
w
(
x
,
t
)
w(x,t)
w(x,t)的定解问题
w
t
t
−
a
2
w
x
x
=
−
v
t
t
+
a
2
v
x
x
=
x
l
[
μ
′
′
(
t
)
−
v
′
′
(
t
)
]
−
μ
′
′
(
t
)
,
w
∣
x
=
0
=
0
,
w
∣
x
=
l
=
0
,
w
∣
t
=
0
=
φ
(
x
)
−
v
∣
t
=
0
=
φ
(
x
)
+
1
l
[
μ
(
0
)
−
v
(
0
)
]
x
−
μ
(
0
)
,
w
t
∣
t
=
0
=
ψ
(
x
)
−
v
t
∣
t
=
0
=
ψ
(
x
)
+
1
l
[
μ
′
(
0
)
−
v
′
(
0
)
]
x
−
μ
′
(
0
)
w_{tt}-a^2w_{xx}=-v_{tt}+a^2v_{xx}=\frac{x}{l}[\mu^{''}(t)-v^{''}(t)]-\mu^{''}(t),\\w|_{x=0}=0,w|_{x=l}=0,\\w|_{t=0}=\varphi(x)-v|_{t=0}=\varphi(x)+\frac{1}{l}[\mu(0)-v(0)]x-\mu(0),\\ w_t|_{t=0}=\psi(x)-v_t|_{t=0}=\psi(x)+\frac{1}{l}[\mu^{'}(0)-v^{'}(0)]x-\mu^{'}(0)
wtt−a2wxx=−vtt+a2vxx=lx[μ′′(t)−v′′(t)]−μ′′(t),w∣x=0=0,w∣x=l=0,w∣t=0=φ(x)−v∣t=0=φ(x)+l1[μ(0)−v(0)]x−μ(0),wt∣t=0=ψ(x)−vt∣t=0=ψ(x)+l1[μ′(0)−v′(0)]x−μ′(0)显然
w
(
x
,
t
)
w(x,t)
w(x,t)的方程一般是非齐次的,但是上面的定解问题具有齐次边界条件,可以使用分离变数法和傅里叶级数法进行求解。
\quad
我们要注意下
x
=
0
x=0
x=0和
x
=
l
x=l
x=l两端都是第二类非齐次边界条件
u
x
∣
x
=
0
,
u
x
∣
x
=
l
=
v
(
t
)
u_x|_{x=0},u_x|_{x=l}=v(t)
ux∣x=0,ux∣x=l=v(t)的情况。我们一般不将v取作是x的线性函数,此时可以试试
v
(
x
,
t
)
=
A
(
t
)
x
2
+
B
(
t
)
x
.
v(x,t)=A(t)x^2+B(t)x.
v(x,t)=A(t)x2+B(t)x.
(二) 特殊处理情况
\quad
例2 弦的
x
=
0
x=0
x=0端固定,
x
=
l
x=l
x=l端受迫作谐振动
A
sin
ω
t
A\sin\omega t
Asinωt,弦的初始位移和初始速度都是零,求弦的振动。这个定解问题是
u
t
t
−
a
2
u
x
x
=
0
(
0
<
x
<
l
)
,
u
∣
x
=
0
=
0
,
u
∣
x
=
l
=
A
sin
ω
t
,
u
∣
t
=
0
=
0
,
u
t
∣
t
=
0
=
0.
u_{tt}-a^2u_{xx}=0 \quad (0<x<l),\\u|_{x=0}=0,u|_{x=l}=A\sin\omega t,\\u|_{t=0}=0,u_t|_{t=0}=0.
utt−a2uxx=0(0<x<l),u∣x=0=0,u∣x=l=Asinωt,u∣t=0=0,ut∣t=0=0.
x
=
l
x=l
x=l端为非齐次边界条件。
\quad
在这里介绍一种简单方法,由于求解的弦在
x
=
l
x=l
x=l端受迫作谐振动
A
sin
ω
t
A\sin\omega t
Asinωt情况下的振动,它一定有一个特解,满足齐次方程(上面的第一个式子),非齐次边界条件(第二个式子),且跟
x
=
l
x=l
x=l端同步振动,即其时间部分的函数亦为
sin
ω
t
\sin \omega t
sinωt,就是说,特解具有分离变数的形式:
v
(
x
,
t
)
=
X
(
x
)
sin
ω
t
v(x,t)=X(x)\sin\omega t
v(x,t)=X(x)sinωt将此式代入齐次方程和边界条件,得
{
X
′
′
+
(
ω
a
)
2
X
=
0
X
(
0
)
=
0
,
X
(
l
)
=
A
\left\{ \begin{aligned} X^{''}+(\frac{\omega}{a})^2X=0 \\ X(0)=0,X(l)=A \\ \end{aligned} \right.
⎩⎨⎧X′′+(aω)2X=0X(0)=0,X(l)=A
\quad
通过解上面的常微分方程能够得到
X
(
x
)
=
[
A
/
sin
(
ω
l
/
a
)
]
sin
(
ω
x
/
a
)
X(x)=[A/\sin(\omega l/a)]\sin(\omega x/a)
X(x)=[A/sin(ωl/a)]sin(ωx/a),从而
v
(
x
,
t
)
=
A
sin
ω
l
a
sin
ω
x
a
sin
ω
t
,
v(x,t)=\frac{A}{\sin\frac{\omega l}{a}}\sin\frac{\omega x}{a}\sin\omega t,
v(x,t)=sinaωlAsinaωxsinωt,于是令
u
(
x
,
t
)
=
v
(
x
,
t
)
+
w
(
x
,
t
)
u(x,t)=v(x,t)+w(x,t)
u(x,t)=v(x,t)+w(x,t)将上面的两个方程代入到原定解问题中,得到
w
(
x
,
t
)
w(x,t)
w(x,t)的定解问题
w
t
t
−
a
2
w
x
x
=
−
(
v
x
x
−
a
2
v
x
x
)
=
0
w
∣
x
=
0
=
0
,
w
∣
x
=
l
=
0
w
∣
t
=
0
=
0
,
w
t
∣
t
=
0
=
−
A
ω
sin
(
ω
x
/
a
)
sin
(
ω
l
/
a
)
w_{tt}-a^2w_{xx}=-(v_{xx}-a^2v_{xx})=0\\w|_{x=0}=0,w|_{x=l}=0\\w|_{t=0}=0,w_t|_{t=0}=-A\omega\frac{\sin(\omega x/a)}{\sin(\omega l/a)}
wtt−a2wxx=−(vxx−a2vxx)=0w∣x=0=0,w∣x=l=0w∣t=0=0,wt∣t=0=−Aωsin(ωl/a)sin(ωx/a)我们得到了齐次方程,齐次边界条件,可用分离变数法求解,其一般解是
w
(
x
,
t
)
=
∑
n
=
1
∞
(
A
n
cos
n
π
a
l
t
+
B
n
sin
n
π
a
l
t
)
sin
n
π
l
x
w(x,t)=\sum_{n=1}^{\infty}(A_n\cos\frac{n\pi a}{l}t+B_n\sin\frac{n\pi a}{l}t)\sin\frac{n\pi}{l}x
w(x,t)=n=1∑∞(Ancoslnπat+Bnsinlnπat)sinlnπx其中
A
n
,
B
n
A_n,B_n
An,Bn为
A
n
=
0
,
B
n
=
2
n
π
a
∫
0
l
(
−
A
ω
)
sin
(
ω
ξ
/
a
)
sin
(
ω
l
/
a
)
sin
n
π
ξ
l
d
ξ
=
−
2
A
ω
n
π
a
sin
(
ω
l
/
a
)
[
−
sin
(
ω
/
a
+
n
π
/
l
)
ξ
2
(
ω
/
a
+
n
π
/
l
)
+
sin
(
ω
/
a
−
n
π
/
l
)
ξ
2
(
ω
/
a
−
n
π
/
l
)
]
0
l
A
π
n
π
a
sin
(
ω
l
/
a
)
[
sin
(
ω
l
/
a
+
n
π
)
ω
/
a
+
n
π
/
l
−
sin
(
ω
l
/
a
−
n
π
)
ω
/
a
−
n
π
/
l
]
=
(
−
1
)
n
A
ω
n
π
a
[
1
ω
/
a
+
n
π
/
l
−
1
ω
/
a
−
n
π
/
l
]
=
(
−
1
)
n
2
A
ω
a
l
1
ω
2
/
a
2
−
n
2
π
2
/
l
2
A_n=0,\\B_n=\frac{2}{n\pi a}\int_0^l(-A\omega)\frac{\sin(\omega\xi/a)}{\sin(\omega l/a)}\sin\frac{n\pi\xi}{l}d\xi\\=\frac{-2A\omega}{n\pi a\sin(\omega l/a)}[-\frac{\sin(\omega /a+n\pi/l)\xi}{2(\omega /a+n\pi /l)}+\frac{\sin(\omega/a-n\pi/l)\xi}{2(\omega/a-n\pi/l)}]^l_0\\\frac{A\pi}{n\pi a\sin(\omega l/a)}[\frac{\sin(\omega l/a+n\pi)}{\omega/a+n\pi/l}-\frac{\sin(\omega l/a -n\pi)}{\omega/a-n\pi /l}]\\=(-1)^n\frac{A\omega}{n\pi a}[\frac{1}{\omega /a+n\pi /l}-\frac{1}{\omega/a-n\pi/l}]\\=(-1)^n\frac{2A\omega}{al}\frac{1}{\omega^2/a^2-n^2\pi^2/l^2}
An=0,Bn=nπa2∫0l(−Aω)sin(ωl/a)sin(ωξ/a)sinlnπξdξ=nπasin(ωl/a)−2Aω[−2(ω/a+nπ/l)sin(ω/a+nπ/l)ξ+2(ω/a−nπ/l)sin(ω/a−nπ/l)ξ]0lnπasin(ωl/a)Aπ[ω/a+nπ/lsin(ωl/a+nπ)−ω/a−nπ/lsin(ωl/a−nπ)]=(−1)nnπaAω[ω/a+nπ/l1−ω/a−nπ/l1]=(−1)nal2Aωω2/a2−n2π2/l21这样,
w
(
x
,
t
)
=
2
A
ω
a
l
∑
n
=
1
∞
1
ω
2
/
a
2
−
n
2
π
2
/
l
2
sin
n
π
a
t
l
sin
n
π
x
l
,
u
(
x
,
t
)
=
A
sin
(
ω
x
/
a
)
sin
(
ω
l
/
a
)
sin
ω
t
+
2
A
ω
a
l
∑
n
=
1
∞
1
ω
2
/
a
2
−
n
2
π
2
/
l
2
sin
n
π
a
t
l
sin
n
π
x
l
w(x,t)=\frac{2A\omega}{al}\sum_{n=1}^{\infty}\frac{1}{\omega^2/a^2-n^2\pi^2/l^2}\sin\frac{n\pi at}{l}\sin\frac{n\pi x}{l},\\u(x,t)=A\frac{\sin(\omega x/a)}{\sin(\omega l/a)}\sin\omega t\\ +\frac{2A\omega}{al}\sum_{n=1}^{\infty}\frac{1}{\omega^2/a^2-n^2\pi^2/l^2}\sin\frac{n\pi at}{l}\sin\frac{n\pi x}{l}
w(x,t)=al2Aωn=1∑∞ω2/a2−n2π2/l21sinlnπatsinlnπx,u(x,t)=Asin(ωl/a)sin(ωx/a)sinωt+al2Aωn=1∑∞ω2/a2−n2π2/l21sinlnπatsinlnπx