python大量数据折线图-Python数据可视化练习:各种折线图的用法

本文介绍了使用pyecharts库在Python中绘制各种折线图的方法,包括基本折线图、连接空数据、多条折线重叠、平滑曲线、阶梯图、样式变换、面积图、双横坐标图和用电量随时间变化的示例。通过这些例子,读者可以学习如何用pyecharts创建复杂的数据可视化效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。

以下文章来源于python数据分析之禅 ,作者鸟哥

折线图是排列在工作表的列或行中的数据可以绘制到折线图中。折线图可以显示随时间(根据常用比例设置)而变化的连续数据,因此非常适用于显示在相等时间间隔下数据的趋势。

9e33c95592ac4d5b951837a140d81183

下面我给大家介绍一下如何用pyecharts画出各种折线图

1.基本折线图

importpyecharts.options as optsfrom pyecharts.charts importLine

x=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']

y=[100,200,300,400,500,400,300]

line=(

Line()

.set_global_opts(

tooltip_opts=opts.TooltipOpts(is_show=False),

xaxis_opts=opts.AxisOpts(type_="category"),

yaxis_opts=opts.AxisOpts(

type_="value",

axistick_opts=opts.AxisTickOpts(is_show=True),

splitline_opts=opts.SplitLineOpts(is_show=True),

),

)

.add_xaxis(xaxis_data=x)

.add_yaxis(

series_name="基本折线图",

y_axis=y,

symbol="emptyCircle",

is_symbol_show=True,

label_opts=opts.LabelOpts(is_show=False),

)

)

line.render_notebook()

ece7422f620a4a10b3fe56f94bb0f84f

series_name:图形名称

y_axis:数据

symbol:标记的图形,pyecharts提供的类型包括'circle', 'rect', 'roundRect', 'triangle', 'diamond', 'pin', 'arrow', 'none',也可以通过 'image://url' 设置为图片,其中 URL 为图片的链接。is_symbol_show:是否显示 symbol

2.连接空数据(折线图)

有时候我们要分析的数据存在空缺值,需要进行处理才能画出折线图

importpyecharts.options as optsfrom pyecharts.charts importLine

x=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']

y=[100,200,300,400,None,400,300]

line=(

Line()

.add_xaxis(xaxis_data=x)

.add_yaxis(

series_name="连接空数据(折线图)",

y_axis=y,

is_connect_nones=True

)

.set_global_opts(title_opts=opts.TitleOpts(title="Line-连接空数据"))

)

line.render_notebook()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值