6. 聚类算法之K-Means

有监督学习&无监督学习:

决策树,随机森林,PCA和逻辑回归,他们虽然有着不同的功能,但却都属于“有监督学习”的一部分,即是说,模型在训练的时候,即需要特征矩阵X,也需要真实标签y。

机器学习当中,还有相当一部分算法属于“无监督学习”,无监督的算法在训练的时候只需要特征矩阵X,不需要标签。而聚类算法,就是无监督学习的代表算法。

 

K-Means的定义:

作为聚类算法的典型代表,KMeans可以说是最简单的聚类算法没有之一,那它是怎么完成聚类的呢?

答:

KMeans算法将一组N个样本的特征矩阵X划分为K个无交集的簇,直观上来看是簇是一组一组聚集在一起的数据,在一个簇中的数据就认为是同一类。簇就是聚类的结果表现。

簇中所有数据的均值通常被称为这个簇的“质心”(centroids)。
在一个二维平面中,一簇数据点的质心的横坐标就是这一簇数据点的横坐标的均值,质心的纵坐标就是这一簇数据点的纵坐标的均值。同理可推广至高维空间。

簇的个数K是一个超参数,需要我们人为输入来确定。KMeans的核心任务就是根据我们设定好的K,找出K个最优的质心,并将离这些质心最近的数据分别分配到这些质心代表的簇中去。

K-Means的过程:

1 随机抽取K个样本作为最初的质心
2 开始循环:
    2.1 将每个样本点分配到离他们最近的质心,生成K个簇
    2.2 对于每个簇,计算所有被分到该簇的样本点的平均值作为新的质心
3 当质心的位置不再发生变化,迭代停止,聚类完成

评估指标:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值