剑指offer11 旋转数组的最小值-js实现

把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个递增排序的数组的一个旋转,输出旋转数组的最小元素。例如,数组
[3,4,5,1,2] 为 [1,2,3,4,5] 的一个旋转,该数组的最小值为1。

示例 1:

输入:[3,4,5,1,2] 输出:1 示例 2:

输入:[2,2,2,0,1] 输出:0

有序递增数组使用二分查找法实现O(logN)时间复杂度的查找

/**
 * @param {number[]} numbers
 * @return {number}
 */
var minArray = function(numbers) {
    if(numbers.length<2 || numbers[0]<numbers[numbers.length-1]) return numbers[0];

    let left = 0;
    let right = numbers.length-1;
    let mid = Math.floor((left+right)/2);
    while(right-left>1){
        if(numbers[left]===numbers[mid] && numbers[mid]===numbers[right]) return getMin(numbers,left,right);
        if(numbers[mid]>=numbers[left]){
            left = mid;
        }else if(numbers[mid]<=numbers[right]){
            right = mid;
        }else{

        }
        
        
        mid = Math.floor((left+right)/2);
    }
    return numbers[right];

};

function getMin(numbers,left,right){
    let res = numbers[left];
    for(let i=left+1;i<=right;i++){
        if(numbers[i]<res){
            res = numbers[i];
        }
    }
    return res;
}
本项目聚焦于利用Tensorflow框架搭建完整的卷积神经网络(CNN)以实现文本分类任务。文本分类是自然语言处理的关键应用,目的是将文本自动归类到预定义的类别中。项目涵盖从数据预处理到模型训练、评估及应用的全流程。 README.md文件详细阐述了项目概览、安装步骤、运行指南和注意事项,包括环境搭建、代码运行说明以及项目目标和预期结果的介绍。 train.py是模型训练的核心脚本。在Tensorflow中,首先定义模型结构,涵盖CNN的卷积层、池化层和全连接层。接着,加载数据并将其转换为适合模型输入的格式,如词嵌入。之后,设置损失函数(如交叉熵)和优化器(如Adam),并配置训练循环,包括批次大小和训练步数等。训练过程中,模型通过调整权重来最小化损失函数。 text_cnn.py文件包含CNN模型的具体实现细节,涉及卷积层、池化层的构建以及与全连接层的结合,形成完整模型。此外,还可能包含模型初始化、编译(设定损失函数和评估指标)及模型保存功能。 eval.py是用于模型评估的脚本,主要在验证集或测试集上运行模型,计算性能指标,如准确率、精确率、召回率和F1分数,以评估模型在未见过的数据上的表现。 data_helpers.py负责数据预处理,包括分词、构建词汇表、将文本转换为词向量(如使用预训练的Word2Vec或GloVe向量),以及数据划分(训练集、验证集和测试集)。该文件还可能包含数据批处理功能,以提高模型训练效率。 data文件夹存储了用于训练和评估的影评数据集,包含正负面评论的标注数据。数据预处理对模型性能至关重要。本项目提供了一个完整的端到端示例,是深度学习文本分类初学者的优质学习资源。通过阅读代码,可掌握利用Tensorflow构建CNN处理文本数据的方法,以及模型管理和评估技巧。同时,项目展示了如何使用大型文本数据集进行训练,这对提升模型泛化能力极为重要。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值