Recommender Systems Handbook-Chapter 1 读书笔记(上)

本文介绍了推荐系统的多种功能,包括寻找好商品、改进用户画像等,并概述了推荐系统所需的数据源和推荐技术,如基于内容的推荐、协同过滤等。此外还列举了一些常见的应用场景,如娱乐、电商和服务领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

推荐系统(Recommender Systems,RSs)是为user提供可能有用的items的软件工具和技术。这一章主要是介绍一些RS的基本概念,目标是勾画一个轮廓,用一种清晰的结构化的方式,帮助读者在本书浩如烟海的内容中,提供一个导航。

1.1 Introduction

此处省略1万字

1.2 Recommender Systems Function

推荐系统的一些作用:

  • Find some good items
  • Find all good items
  • Annotation in context
  • Recommend a sequence
  • Recommend a bundle
  • Just browsing
  • Find credible recommender
  • Improve the profile
  • Express self
  • Help others
  • Influence others

(真是大而全的神书,原来推荐系统还有那么多作用,长见识了!!)

1.3 Data and Knowledge Sources

推荐系统需要积极地采集各种各样的数据来处理并作出推荐。而这些数据无非分为三类:

  • Items
  • Users
  • Transactions

1.4 Recommendation Techniques

  • Content-based
  • Collaborative filtering
  • Demographic
  • Knowledge-based
  • Community-based
  • Hybrid recommender systems

1.5 Application and Evaluation

以下是一些常见的推荐系统应用:

  • Entertainment (电影,音乐等)
  • Content (新闻,文档,网页等)
  • E-commerce (电商)
  • Services (出行、租房等服务)

随着推荐系统越来越流行,新的应用被发掘出来,例如tweeter会推荐好友和推文给user。所以,上面的列表不能覆盖所有的应用领域,只是一些最初的不同的应用领域。

评估一个推荐系统是必要的。有时候,离线的评估很准确,然而推荐结果却不被实际的user接受。所以通常需要线上的评估。

(第一章6-8节见下一篇博客)

The explosive growth of e-commerce and online environments has made the issue of information search and selection increasingly serious; users are overloaded by options to consider and they may not have the time or knowledge to personally evaluate these options. Recommender systems have proven to be a valuable way for online users to cope with the information overload and have become one of the most powerful and popular tools in electronic commerce. Correspondingly, various techniques for recommendation generation have been proposed. During the last decade, many of them have also been successfully deployed in commercial environments. Recommender Systems Handbook, an edited volume, is a multi-disciplinary effort that involves world-wide experts from diverse fields, such as artificial intelligence, human computer interaction, information technology, data mining, statistics, adaptive user interfaces, decision support systems, marketing, and consumer behavior. Theoreticians and practitioners from these fields continually seek techniques for more efficient, cost-effective and accurate recommender systems. This handbook aims to impose a degree of order on this diversity, by presenting a coherent and unified repository of recommender systems’ major concepts, theories, methodologies, trends, challenges and applications. Extensive artificial applications, a variety of real-world applications, and detailed case studies are included. Recommender Systems Handbook illustrates how this technology can support the user in decision-making, planning and purchasing processes. It works for well known corporations such as Amazon, Google, Microsoft and AT&T. This handbook is suitable for researchers and advanced-level students in computer science as a reference.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值