tf.executing_eagerly

本文介绍如何在TensorFlow中启用eager execution,包括通过tf.compat.v1.enable_eager_execution全局设置和函数级使用tf.contrib.eager.py_func。重点在于Eager Execution在教程和文本分类示例中的应用。
部署运行你感兴趣的模型镜像

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

WARNING:tensorflow:From D:\propro\py\lib\site-packages\tensorflow\python\compat\v2_compat.py:108: disable_resource_variables (from tensorflow.python.ops.variable_scope) is deprecated and will be removed in a future version. Instructions for updating: non-resource variables are not supported in the long term Warning: mesh step size 0.025000 is larger than the boundary distance 0.001953. A_mat shape: (41, 41) B_mat shape: (41, 41) Compiling model... Building feed-forward neural network... WARNING:tensorflow:From D:\propro\py\lib\site-packages\keras\src\utils\version_utils.py:76: The name tf.executing_eagerly_outside_functions is deprecated. Please use tf.compat.v1.executing_eagerly_outside_functions instead. 'build' took 0.464569 s 2025-10-09 15:55:13.476634: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: SSE SSE2 SSE3 SSE4.1 SSE4.2 AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:From D:\propro\py\lib\site-packages\deepxde\model.py:172: The name tf.train.Saver is deprecated. Please use tf.compat.v1.train.Saver instead. Generating sparse fractional matrix... Traceback (most recent call last): File "D:\desk\23数学硕\硕士期间的论文\1.在投 and 发表论文(AC!!!)\8.fpinn\代码\deepxde-master\deepxde-master\examples\pinn_forward\csdn.py", line 197, in <module> model.compile("adam", lr=lr, metrics=["l2 relative error"]) File "D:\propro\py\lib\site-packages\deepxde\utils\internal.py", line 22, in wrapper result = f(*args, **kwargs) File "D:\propro\py\lib\site-packages\deepxde\model.py", line 141, in compile self._compile_tensorflow_compat_v1(lr, loss_fn, decay) File "D:\propro\py\lib\site-packages\deepxde\model.py", line 192, in _compile_tensorflow_compat_v1 losses_train = losses(self.data.losses_train) File "D:\propro\py\lib\site-packages\deepxde\model.py", line 176, in losses losses = losses_fn( File "D:\propro\py\lib\site-packages\deepxde\data\fpde.py", line 114, in losses_train f = self.pde(inputs, outputs, int_mat) File "D:\desk\23数学硕\硕士期间的论文\1.在投 and 发表论文(AC!!!)\8.fpinn\代码\deepxde-master\deepxde-master\examples\pinn_forward\csdn.py", line 110, in pde d2u_dx2 = g2.gradient(du_dx, x_col) File "D:\propro\py\lib\site-packages\tensorflow\python\eager\backprop.py", line 1023, in gradient raise TypeError("Argument `target` should be a list or nested structure" TypeError: Argument `target` should be a list or nested structure of Tensors, Variables or CompositeTensors to be differentiated, but received None. 这个代码报错了 要怎么修改呢 将修改后的完整代码展示出
最新发布
10-10
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wanderer001

ROIAlign原理

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值