MaxCompute - ODPS重装上阵 第二弹 - 新的基本数据类型与内建函数

MaxCompute(原ODPS)通过引入更多基本数据类型如TINYINT、VARCHAR及TIMESTAMP等,增强了SQL语言的表达能力。同时,新增了大量内建函数,包括数学、日期和字符串函数等,以更好地适应复杂的应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MaxCompute(原ODPS)是阿里云自主研发的具有业界领先水平的分布式大数据处理平台, 尤其在集团内部得到广泛应用,支撑了多个BU的核心业务。 MaxCompute除了持续优化性能外,也致力于提升SQL语言的用户体验和表达能力,提高广大ODPS开发者的生产力。

MaxCompute基于ODPS2.0新一代的SQL引擎,显著提升了SQL语言编译过程的易用性与语言的表达能力。我们在此推出MaxCompute(ODPS2.0)重装上阵系列文章

第一弹 - 善用MaxCompute编译器的错误和警告
第二弹 - 新的基本数据类型与内建函数
第三弹 - 复杂类型
第四弹 - CTE,VALUES,SEMIJOIN

上次向您介绍了 [编译器的易用性改进] https://yq.aliyun.com/articles/225028),这次向您介绍新的基本数据类型与内建函数

原ODPS只有六种基本数据类型, bigint, double, decimal, string, datetime, boolean。一般用起来也还够用,但是在某些场景下就不够了

  • 场景1
    一个项目需要将原来在SQL SERVER上面运行的ETL系统,最近因为数据量暴涨,需要迁移到MaxCompute。发现某些表用了VARCHAR,有的用了INT。这些类型也被系统的多处SQL脚本用到还参与了运算。迁移到ODPS上时候,用STRING代替VARCHAR,用BIGINT代替INT ( 注1 )。

迁移完成后发现数据和原有系统对不上,是不是VARCHAR的截断,INT的溢出行为导致数据不同呢?还是什么其他原因,面对着现存系统,没办法,只好一点点看代码,跑数据,做分析。本来以为挺轻松的项目,花了几周时间才搞定。。。

  • 场景2
    我的项目需要存放二进制数据到表中,因为是语音识别项目,每小段采集的音频如果作为一个字段存下去,然后用个UDF处理起来很方便。可是,ODPS没有BINARY数据类型,好吧,就存成STRING好了。可是编写写UDF时候好麻烦,为了存进去,必须将byte[]编码成string, 读的时候又必须解码,代码写了一大堆,运行速度也慢了好多。。。

MaxCompute采用基于ODPS2.0的SQL引擎,大幅度扩充了基本类型并提供了配套的内建函数,基本解决了上述问题。

基本类型的扩充

此文中采用MaxCompute Studio作展示,首先,安装MaxCompute Studio导入测试MaxCompute项目,创建工程,建立一个新的MaxCompute脚本文件, 如下

screenshot.png

运行后,建立另一个文件插入数据,如下:
screenshot.png

运行后,可以在MaxCompute Studio的Project Explorer中找到新创建的表,察看表的详细信息,并预览数据,如下图
screenshot.png

可以看到

  • 创建表的时候,首先指定使用MaxCompute新类型系统,因为兼容性的考虑,需要您主动打开这个设定。也可以在MaxCompute Studio中缺省指定,如下图
    screenshot.png

MaxCompute Studio支持含新类型表数据的导入导出,可参考此ATA文章

如果不使用MaxCompute Studio,可以在脚本中指定,set odps.sql.type.system.odps2=true;。Studio实际上在后台也是使用这个开关来控制是否启用新类型。odps.sql.type.system.odps2设定为true的时候,除了可以使用新类型,也控制其它方面的一些行为改变。将在相关部分说明。

如果需要在MaxCompute 项目中缺省打开,可以联系您的项目管理员,在项目模板中设定。

  • 扩充后MaxCompute支持的基本数据类型如下表,新增类型有TINYINT, SMALLINT, INT, FLOAT, VARCHAR, TIMESTAMP, BINARY。
类型是否新增常量定义描述
TINYINT1Y, -127Y8位有符号整形, 范围-128到127
SMALLINT32767S, -100S16位有符号整形, 范围-32768到32767
INT1000, -15645787 ( 注1 )32位有符号整形, 范围-2^31到2^31 - 1
BIGINT100000000000L, -1L64位有符号整形, 范围-2^63 + 1到2^63 - 1
FLOAT32位二进制浮点型
DOUBLE3.1415926 1E+764位二进制浮点型
DECIMAL3.5BD, 99999999999.9999999BD10进制精确数字类型,整形部分范围-10^36+1到10^36-1, 小数部分精确到10^-18
VARCHAR无 ( 注2 )变长字符类型,n为长度,取值范围1到65535
STRING"abc", 'bcd', "alibaba" 'inc' ( 注3 )字符串类型,目前长度限制为8M
BINARY二进制数据类型,目前长度限制为8M
DATETIMEDATETIME '2017-11-11 00:00:00'日期时间类型,范围从0001年1月1日到9999年12月31日, 精确到毫秒
TIMESTAMPTIMESTAMP '2017-11-11 00:00:00.123456789'与时区无关的时间戳类型,范围从0001年1月1日到9999年12月31日 23.59:59.999999999, 精确到纳秒 ( 注4 )
BOOLEANTRUE,FALSEboolean类型, 取值TRUE或FALSE

新的隐式转换规则表如下表 ( 注5 )

| | boolean | tinyint | smallint | int | bigint | float | double | decimal | string | varchar | timestamp | binary |
|--------------|---------|---------|----------|-------|--------|-------|--------|---------|--------|---------|-----------|--------|
| boolean to | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE |
| tinyint to | FALSE | TRUE | TRUE | TRUE | TRUE | TRUE | TRUE | TRUE | TRUE | TRUE | FALSE | FALSE |
| smallint to | FALSE | FALSE | TRUE | TRUE | TRUE | TRUE | TRUE | TRUE | TRUE | TRUE | FALSE | FALSE |
| int to | FALSE | FALSE | FALSE | TRUE | TRUE | TRUE | TRUE | TRUE | TRUE | TRUE | FALSE | FALSE |
| bigint to | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | TRUE | TRUE | TRUE | TRUE | FALSE | FALSE |
| float to | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | TRUE | TRUE | TRUE | FALSE | FALSE |
| double to | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | TRUE | TRUE | FALSE | FALSE |
| decimal to | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | TRUE | FALSE | FALSE |
| string to | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | TRUE | TRUE | FALSE | FALSE |
| varchar to | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | TRUE | TRUE | FALSE | FALSE |
| timestamp to | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | TRUE | FALSE |
| binary to | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE |

此外,还新增了DECIMAL类型与DATETIME的常量定义方式, 100BD就是数值为100的DECIMAL,datetime '2017-11-11 00:00:00'就是个datetime类型的常量。常量定义的方便之处在于可以直接用到values子句和values表中,以后会单独介绍。

内建函数的扩充

任何编程语言,包括SQL,不管语言本身多强大,如过没有丰富的函数后者类库支持,在应用的时候还是会很不方便,MaxCompute配合新数据类型,大大丰富了内建函数,如下:

  • 数学函数
    log2, log10, bin, hex, unhex, degrees, radians, sign, e, pi, factorial, cbrt, shiftleft, shiftright, shiftrightunsigned
  • 日期函数
    unix_timestamp, year, quarter, month, day, dayofmonth, hour, minute, second, millisecond, nanosecond, from_utc_timestamp, current_timestamp, add_months, last_day, next_day, months_between
  • 字符串函数
    concat_ws, lpad, rpad, replace, soundex, substring_index, base64, unbase64
  • 聚合函数
    corr

这些函数大部分与Hive的内建函数兼容,用法可以直接参考Hive的文档。与Hive不同的是MaxCompute提供的这些函数都是用本地代码实现的高效版本。

新增的TIMESTAMP数据类型支持纳秒级别的精度,与之配合,新增了MaxCompute特有的millisecond, nanosecond函数,可以取出TIMESTAMP, DATETIME的毫秒部分与TIMESTAMP的纳秒部分。

如本系列上一篇中提到的,MaxCompute支持新的强制转换写法,例如,要强制bigint变量为转换为string,可以直接写string(a_bigint), 和写成cast(a_bigint as string)是等效的。具体用哪种形式完全取决于您的偏好。

需要注意的是所有用来支持新类型的函数,例如current_timestamp,也需要设定set odps.sql.type.system.odps2=true;,否则会报告编译错误。

分区类型的扩充

分区类型的支持也进行了扩充,目前分区类型支持TINYINT, SMALLINT, INT, BIGINT, VARCHAR与STRING ( 注6 )

另外原ODPS在动态分区的时候,如果分区列的类型与对应SELECT列表中的列的类型不严格一致,会报错。MaxCompute支持隐式类型转换
例如:

set odps.sql.type.system.odps2=true;
create table parttable(a int, b double) partitioned by (p string);
insert into parttable partition(p) (p, a) select key, value, current_timestmap() from src;
select * from parttable;

返回

abp
0NULL2017-01-23 22:30:47.130406621
0NULL2017-01-23 22:30:47.130406621

可以看到分区列p的值为从timestamp类型隐含转换而来。

使用UDF

目前,MaxCompute2.0的JAVA UDF已经支持了新类型,Python UDF会尽快实现。JAVA UDF使用新类型的方法如下:

  1. UDAF和UDTF通过@Resolve注解来获取signature,MaxCompute2.0支持在注解中使用新类型,如 @Resolve("smallint->varchar(10)")
  2. UDF通过反射分析evaluate来获取signature,此时max compute内置类型与JAVA类型符合一一映射关系
max compute typejava type
tinyintjava.lang.Byte
smallintjava.lang.Short
intjava.lang.Integer
bigintjava.lang.Long
floatjava.lang.Float
doublejava.lang.Double
decimaljava.math.BigDecimal
booleanjava.lang.Boolean
stringjava.lang.String
varcharcom.aliyun.odps.data.Varchar
binarycom.aliyun.odps.data.Binary
datetimejava.util.Date
timestampjava.sql.Timestamp
arrayjava.util.List
mapjava.util.Map
structcom.aliyun.odps.data.Struct

需要注意的是这里,array类型对应的java类型是List,而不是数组

小结

MaxCompute大大扩充了基本数据类型与内建函数,可以更好的适应丰富的应用场景。不过,很多比较复杂的场景仅使用基本类型仍然很麻烦,请期待MaxCompute重装上阵下一篇,复杂类型的支持

标注

  • 注1
  1. 对于INT常量,如果超过INT取值范围,会转为BIGINT,如果超过BIGINT取值范围,会转为DOUBLE
  2. 在原ODPS下,因为历史原因,SQL脚本中的所有int类型都被转换为bigint,例如
create table a_bigint_table(a int); -- 这里的int实际当作bigint处理
select cast(id as int) from mytable; -- 这里的int实际当作bigint处理

为了与ODPS原有模式兼容,MaxCompute在没有设定odps.sql.type.system.odps2为true的情况下,仍然保留此转换,但是会报告一个警告提示int被当作bigint处理了,如果您的脚本有此种情况,建议全部改写为bigint,避免混淆。

  • 注2 VARCHAR类型常量可通过STRING常量的隐式转换表示
  • 注3 STRING常量支持连接, 例如'abc' 'xyz'会解析为'abcxyz',不同部分可以写在不同行上
  • 注4 受底层系统限制,目前调用current_timestamp还达不到纳秒精度,例如
meta_dev>set odps.sql.type.system.odps2=true;select nanosecond(current_timestamp());

输出为类似

+------+
| _c0  |
+------+
| 877000000 |
+------+

Timestamp常量与外部数据导入可以支持纳秒精度。

  • 注5 在原ODPS下,因为历史原因,DOUBLE可以隐式的转换为BIGINT,这个转换潜在可能有数据丢失,一般数据库系统都不允许。为了与ODPS原有模式兼容,MaxCompute在没有设定odps.sql.type.system.odps2为true的情况下,仍然允许此转换,但是会报告警告;在设定odps.sql.type.system.odps2为true的情况下,不允许此隐式类型转换。
  • 注6 在原ODPS下,因为历史原因,虽然可以指定分区类型为BIGINT,但是除了表的schema表示其为BIGINT, 任何其他情况都被处理为STRING。例如:
create table parttest (a bigint) partitioned by (pt bigint);
insert into parttest partition(pt) select 1, 2 from dual;
insert into parttest partition(pt) select 1, 10 from dual;
select * from parttest where pt >= 2;

返回的结果只有一行,因为10被按照字符串和2比,没能返回。为了与ODPS原有模式兼容,MaxCompute在没有设定odps.sql.type.system.odps2为true的情况下,仍然如此处理;在设定odps.sql.type.system.odps2为true的情况下,BIGINT类型的分区严格按照BIGINT类型处理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值