python最大值最小值函数,Python中列表的最小值和最大值(不使用min / max函数)

作者分享了一种使用递归在Python中寻找列表最小值和最大值的方法,通过min_stack和max_stack两个栈来跟踪过程。探讨了代码复杂度、是否优于排序方法,并提供了性能测试。文章最后给出了两种解决方案的对比结果。
部署运行你感兴趣的模型镜像

I was wondering if there is a way to find min & max of a list without using min/max functions in Python. So i wrote a small code for the same using recursion. My logic is very naive: I make two stacks (min_stack and max_stack) which keep track of minimum and maximum during each recursive call. I have two questions:

Could somebody help me estimate the complexity of my code?

Is there a better way to do this? Will sorting the list using mergesort/quicksort and picking up first and last element give a better performance?

Thank you

Here is my attempt in Python:

minimum = []

maximum = []

# Defining Stack Class

class Stack:

def __init__(self) :

self.items = []

def push(self, item) :

self.items.append(item)

def pop(self) :

return self.items.pop()

def access(self, index):

return self.items[index]

def isEmpty(self) :

return (self.items == [])

def length(self):

return len(self.items)

def minmax(input_list):

# make two stacks, one for min and one for max

min_stack = Stack()

max_stack = Stack()

# comparing the first two elements of the list and putting them in appropriate stack

if input_list[0]

min_stack.push(input_list[0])

max_stack.push(input_list[1])

else:

max_stack.push(input_list[0])

min_stack.push(input_list[1])

# Pushing remaining elements of the list into appropriate stacks.

for i in range(2, len(input_list)):

if input_list[i] < min_stack.access(-1):

min_stack.push(input_list[i])

else:

max_stack.push(input_list[i])

# to find minimum

minlist = []

while min_stack.length() > 0:

minlist.append(min_stack.pop())

# to find maximum

maxlist = []

while max_stack.length() > 0:

maxlist.append(max_stack.pop())

if len(minlist) > 1:

minmax(minlist)

else:

minimum.append(minlist)

if len(maxlist) > 1:

minmax(maxlist)

else:

maximum.append(maxlist)

def main():

input_list = [2, 0, 2, 7, 5, -1, -2]

print 'Input List is: ', input_list

minmax(input_list)

print 'Global Minimum is: ', minimum[0]

print 'Global Maximum is: ', maximum[len(maximum)-1]

if __name__ == "__main__":

main()

解决方案

Using sorted() would, of course, be reliable, quick to write, and high performance for moderate-sized lists because it is built-in. For large lists, an O(n) algorithm would be faster e.g.:

def minmax1 (x):

# this function fails if the list length is 0

minimum = maximum = x[0]

for i in x[1:]:

if i < minimum:

minimum = i

else:

if i > maximum: maximum = i

return (minimum,maximum)

print(minmax1([9,8,7,6,5,4,3,2,1,11,12,13,14,15,16,17,18,19]))

print(minmax1([1]))

print(minmax1([2, 0, 2, 7, 5, -1, -2]))

... for which the output is:

(1, 19)

(1, 1)

(-2, 7)

I was interested to check the performance of the two alternatives. On my PC running Windows XP and Python 3.2.3, I found that the sorting approach is faster than the minmax1() function defined above for lists of fewer than 500 elements but, for longer lists, the O(n) minmax1() is faster. My timing test code was as follows:

def minmax_sort(x):

x = sorted(x)

return (x[0],x[-1])

import timeit

aa = list(range(0,100))

a = aa

while (1):

stime = min(timeit.repeat('minmax_sort(a)', "from __main__ import minmax_sort,a",number=1000))

mtime = min(timeit.repeat('minmax1(a)', "from __main__ import minmax,a",number=1000))

if (stime > mtime):

break

else:

a = a + aa

print(len(a))

您可能感兴趣的与本文相关的镜像

Python3.11

Python3.11

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值