[LintCode] Longest Increasing Subsequence 最长递增子序列

本文介绍了一种解决最长递增子序列(LIS)问题的方法,通过寻找所有可能的递增子序列并选取最长的一个来解决问题。示例中给出了具体的实现代码及两个示例,该方法的时间复杂度为O(n^2)。

 

Given a sequence of integers, find the longest increasing subsequence (LIS).

You code should return the length of the LIS.

Have you met this question in a real interview?

 
 
Example

For [5, 4, 1, 2, 3], the LIS  is [1, 2, 3], return 3

For [4, 2, 4, 5, 3, 7], the LIS is [4, 4, 5, 7], return 4

Challenge

Time complexity O(n^2) or O(nlogn)

Clarification

What's the definition of longest increasing subsequence?

    * The longest increasing subsequence problem is to find a subsequence of a given sequence in which the subsequence's elements are in sorted order, lowest to highest, and in which the subsequence is as long as possible. This subsequence is not necessarily contiguous, or unique.  

    * https://en.wikipedia.org/wiki/Longest_common_subsequence_problem

 

我们先来看一种类似Brute Force的方法,这种方法会找出所有的递增的子序列,并把它们都保存起来,最后再找出里面最长的那个,时间复杂度为O(n2),参见代码如下:

 

class Solution {
public:
    /**
     * @param nums: The integer array
     * @return: The length of LIS (longest increasing subsequence)
     */
    int longestIncreasingSubsequence(vector<int> nums) {
        vector<vector<int> > solutions;
        longestIncreasingSubsequence(nums, solutions, 0);
        int res = 0;
        for (auto &a : solutions) {
            res = max(res, (int)a.size());
        }
        return res;
    }
    void longestIncreasingSubsequence(vector<int> &nums, vector<vector<int> > &solutions, int curIdx) {
        if (curIdx >= nums.size() || curIdx < 0) return;
        int cur = nums[curIdx];
        vector<int> best_solution;
        for (int i = 0; i < curIdx; ++i) {
            if (nums[i] <= cur) {
                best_solution = seqWithMaxLength(best_solution, solutions[i]);
            }
        }
        vector<int> new_solution = best_solution;
        new_solution.push_back(cur);
        solutions.push_back(new_solution);
        longestIncreasingSubsequence(nums, solutions, curIdx + 1);
    }
    vector<int> seqWithMaxLength(vector<int> &seq1, vector<int> &seq2) {
        if (seq1.empty()) return seq2;
        if (seq2.empty()) return seq1;
        return seq1.size() < seq2.size() ? seq2 : seq1;
    }  
};

 

还有两种方法,(未完待续。。)

 

参考资料:

http://www.cnblogs.com/lishiblog/p/4190936.html

http://blog.xiaohuahua.org/2015/01/26/lintcode-longest-increasing-subsequence/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值