[问题2014S06] 复旦高等代数II(13级)每周一题(第六教学周)

[问题2014S06]  试用有理标准型理论证明13级高等代数I期末考试最后一题:

设 \(V\) 为数域 \(K\) 上的 \(n\) 维线性空间,  \(\varphi\) 为 \(V\) 上的线性变换, 且存在非零向量 \(\alpha\in V\) 使得 \[V=L(\alpha,\varphi(\alpha),\varphi^2(\alpha),\cdots).\]

设 \(f(x)\) 是 \(\varphi\) 的特征多项式, 并且 \(f(x)\) 在数域 \(K\) 上至少有两个互异的首一不可约因式, 证明: 存在非零向量 \(\beta,\gamma\in V\) 使得 \[ V=L(\beta,\varphi(\beta),\varphi^2(\beta),\cdots)\oplus L(\gamma,\varphi(\gamma),\varphi^2(\gamma),\cdots).\]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值