[zt]矩阵求导公式

今天推导公式,发现居然有对矩阵的求导,狂汗--完全不会。不过还好网上有人总结了。吼吼,赶紧搬过来收藏备份。

基本公式:
Y = A * X --> DY/DX = A'
Y = X * A --> DY/DX = A
Y = A' * X * B --> DY/DX = A * B'
Y = A' * X' * B --> DY/DX = B * A'

1. 矩阵Y对标量x求导:

相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了

Y = [y(ij)] --> dY/dx = [dy(ji)/dx]

2. 标量y对列向量X求导:

注意与上面不同,这次括号内是求偏导,不转置,对N×1向量求导后还是N×1向量

y = f(x1,x2,..,xn) --> dy/dX = (Dy/Dx1,Dy/Dx2,..,Dy/Dxn)'

3. 行向量Y'对列向量X求导:

注意1×M向量对N×1向量求导后是N×M矩阵。

将Y的每一列对X求偏导,将各列构成一个矩阵。

重要结论:

dX'/dX = I

d(AX)'/dX = A'

4. 列向量Y对行向量X’求导:

转化为行向量Y’对列向量X的导数,然后转置。

注意M×1向量对1×N向量求导结果为M×N矩阵。

dY/dX' = (dY'/dX)'

5. 向量积对列向量X求导运算法则:

注意与标量求导有点不同。

d(UV')/dX = (dU/dX)V' + U(dV'/dX)

d(U'V)/dX = (dU'/dX)V + (dV'/dX)U'

重要结论:

d(X'A)/dX = (dX'/dX)A + (dA/dX)X' = IA + 0X' = A

d(AX)/dX' = (d(X'A')/dX)' = (A')' = A

d(X'AX)/dX = (dX'/dX)AX + (d(AX)'/dX)X = AX + A'X

6. 矩阵Y对列向量X求导:

将Y对X的每一个分量求偏导,构成一个超向量。

注意该向量的每一个元素都是一个矩阵。

7. 矩阵积对列向量求导法则:

d(uV)/dX = (du/dX)V + u(dV/dX)

d(UV)/dX = (dU/dX)V + U(dV/dX)

重要结论:

d(X'A)/dX = (dX'/dX)A + X'(dA/dX) = IA + X'0 = A

8. 标量y对矩阵X的导数:

类似标量y对列向量X的导数,

把y对每个X的元素求偏导,不用转置。

dy/dX = [ Dy/Dx(ij) ]

重要结论:

y = U'XV = ΣΣu(i)x(ij)v(j) 于是 dy/dX = [u(i)v(j)] = UV'

y = U'X'XU 则 dy/dX = 2XUU'

y = (XU-V)'(XU-V) 则 dy/dX = d(U'X'XU - 2V'XU + V'V)/dX = 2XUU' - 2VU' + 0 = 2(XU-V)U'

9. 矩阵Y对矩阵X的导数:

将Y的每个元素对X求导,然后排在一起形成超级矩阵。

10.乘积的导数

d(f*g)/dx=(df'/dx)g+(dg/dx)f'

结论

d(x'Ax)=(d(x'')/dx)Ax+(d(Ax)/dx)(x'')=Ax+A'x   (注意:''是表示两次转置)

比较详细点的如下:

 

 矩阵求导公式【转】


矩阵求导公式【转】

矩阵求导公式【转】

矩阵求导公式【转】

矩阵求导公式【转】

 http://lzh21cen.blog.163.com/blog/static/145880136201051113615571/

http://hi.baidu.com/wangwen926/blog/item/eb189bf6b0fb702b720eec94.html

其他参考:

Contents

  • Notation
  • Derivatives of Linear Products
  • Derivatives of Quadratic Products

Notation

  • d/dx (y) is a vector whose (i) element is dy(i)/dx
  • d/dx (y) is a vector whose (i) element is dy/dx(i)
  • d/dx (yT) is a matrix whose (i,j) element is dy(j)/dx(i)
  • d/dx (Y) is a matrix whose (i,j) element is dy(i,j)/dx
  • d/dX (y) is a matrix whose (i,j) element is dy/dx(i,j)

Note that the Hermitian transpose is not used because complex conjugates are not analytic.

In the expressions below matrices and vectors ABC do not depend on X.

Derivatives of Linear Products

  • d/dx (AYB) =A * d/dx (Y) * B
    • d/dx (Ay) =A * d/dx (y)
  • d/dx (xTA) =A
    • d/dx (xT) =I
    • d/dx (xTa) = d/dx (aTx) = a
  • d/dX (aTXb) = abT
    • d/dX (aTXa) = d/dX (aTXTa) = aaT
  • d/dX (aTXTb) = baT
  • d/dx (YZ) =Y * d/dx (Z) + d/dx (Y) * Z

Derivatives of Quadratic Products

  • d/dx (Ax+b)TC(Dx+e) = ATC(Dx+e) + DTCT(Ax+b)
    • d/dx (xTCx) = (C+CT)x
      • [C: symmetric]: d/dx (xTCx) = 2Cx
      • d/dx (xTx) = 2x
    • d/dx (Ax+b)T (Dx+e) = AT (Dx+e) + DT (Ax+b)
      • d/dx (Ax+b)T (Ax+b) = 2AT (Ax+b)
    • [C: symmetric]: d/dx (Ax+b)TC(Ax+b) = 2ATC(Ax+b)
  • d/dX (aTXTXb) = X(abT + baT)
    • d/dX (aTXTXa) = 2XaaT
  • d/dX (aTXTCXb) = CTXabT + CXbaT
    • d/dX (aTXTCXa) = (C + CT)XaaT
    • [C:Symmetric] d/dX (aTXTCXa) = 2CXaaT
  • d/dX ((Xa+b)TC(Xa+b)) = (C+CT)(Xa+b)aT

Derivatives of Cubic Products

  • d/dx (xTAxxT) = (A+AT)xxT+xTAxI

Derivatives of Inverses

  • d/dx (Y-1) = -Y-1d/dx (Y)Y-1

Derivative of Trace

Note: matrix dimensions must result in an n*n argument for tr().

  • d/dX (tr(X)) = I
  • d/dX (tr(Xk)) =k(Xk-1)T
  • d/dX (tr(AXk)) = SUMr=0:k-1(XrAXk-r-1)T
  • d/dX (tr(AX-1B)) = -(X-1BAX-1)T
    • d/dX (tr(AX-1)) =d/dX (tr(X-1A)) = -X-TATX-T
  • d/dX (tr(ATXBT)) = d/dX (tr(BXTA)) = AB
    • d/dX (tr(XAT)) = d/dX (tr(ATX)) =d/dX (tr(XTA)) = d/dX (tr(AXT)= A
  • d/dX (tr(AXBXT)) = ATXBT + AXB
    • d/dX (tr(XAXT)) = X(A+AT)
    • d/dX (tr(XTAX)) = XT(A+AT)
    • d/dX (tr(AXTX)) = (A+AT)X
  • d/dX (tr(AXBX)) = ATXTBT + BTXTAT
  • [C:symmetric] d/dX (tr((XTCX)-1A) = d/dX (tr(A (XTCX)-1) = -(CX(XTCX)-1)(A+AT)(XTCX)-1
  • [B,C:symmetric] d/dX (tr((XTCX)-1(XTBX)) = d/dX (tr( (XTBX)(XTCX)-1) = -2(CX(XTCX)-1)XTBX(XTCX)-1 + 2BX(XTCX)-1

Derivative of Determinant

Note: matrix dimensions must result in an n*n argument for det().

  • d/dX (det(X)) = d/dX (det(XT)) = det(X)*X-T
    • d/dX (det(AXB)) = det(AXB)*X-T
    • d/dX (ln(det(AXB))) = X-T
  • d/dX (det(Xk)) = k*det(Xk)*X-T
    • d/dX (ln(det(Xk))) = kX-T
  • [Real] d/dX (det(XTCX)) = det(XTCX)*(C+CT)X(XTCX)-1
    • [CReal,Symmetric] d/dX (det(XTCX)) = 2det(XTCX)* CX(XTCX)-1
  • [CReal,Symmetricc] d/dX (ln(det(XTCX))) = 2CX(XTCX)-1

Jacobian

If y is a function of x, then dyT/dx is the Jacobian matrix of y with respect to x.

Its determinant, |dyT/dx|, is the Jacobian of y with respect to x and represents the ratio of the hyper-volumes dy and dx. The Jacobian occurs when changing variables in an integration: Integral(f(y)dy)=Integral(f(y(x)) |dyT/dx| dx).

Hessian matrix

If f is a function of x then the symmetric matrix d2f/dx2 = d/dxT(df/dx) is the Hessian matrix of f(x). A value of x for which df/dx = 0 corresponds to a minimum, maximum or saddle point according to whether the Hessian is positive definite, negative definite or indefinite.

  • d2/dx2 (aTx) = 0
  • d2/dx2 (Ax+b)TC(Dx+e) = ATCD + DTCTA
    • d2/dx2 (xTCx) = C+CT
      • d2/dx2 (xTx) = 2I
    • d2/dx2 (Ax+b)T (Dx+e) = ATD + DTA
      • d2/dx2 (Ax+b)T (Ax+b) = 2ATA
    • [C: symmetric]: d2/dx2 (Ax+b)TC(Ax+b) = 2ATCA  
http://www.psi.toronto.edu/matrix/calculus.html
内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值