格子路径问题

在一个N*N矩阵的左上角坐着一个机器人,它只能向右运动或向下运动。那么, 机器人运动到右下角一共有多少种可能的路径?

进一步地,

如果对于其中的一些格子,机器人是不能踏上去的。设计一种算法来获得所有可能的路径。

不妨将这个问题再泛化一下,想象这个矩阵是m*n的,左上角的格子是(1, 1), 右下角的坐标是(m, n)。那么其递归就应该是:

path(i, j) = path(i-1, j) + path(i, j-1)

其递归终止条件指的是i=1,j=1,所以我们可以写出这样一段

typedef long long ll;
ll path(ll m, ll n){
    if(m == 1 || n == 1) return 1;
    return path(m-1, n) + path(m, n-1);
}

如果用纯数学的方法来解这道题目,大概也就是个高中排列组合简单题吧。 机器人从(1, 1)走到(m, n)一定要向下走m-1次,向右走n-1次,不管这过程中是怎么走的。 因此,一共可能的路径数量就是从总的步数(m-1+n-1)里取出(m-1)步,作为向下走的步子, 剩余的(n-1)步作为向右走的步子。

ll fact(ll n){
    if(n == 0) return 1;
    else return n*fact(n-1);
}
ll path1(ll m, ll n){
    return fact(m-1+n-1)/(fact(m-1)*fact(n-1));
}

对于第二问,如果有一些格子,机器人是不能踏上去的(比如说放了地雷XD), 那么,我们如何输出它所有可能的路径呢?

让我们先来考虑简单一点的问题,如果我们只要输出它其中一条可行的路径即可, 那么我们可以从终点(m, n)开始回溯,遇到可走的格子就入栈, 如果没有格子能到达当前格子,当前格子则出栈。最后到达(1, 1)时, 栈中正好保存了一条可行路径。代码如下:

版权声明:本文为博主原创文章,转载请标明出处。

转载于:https://www.cnblogs.com/fridge/p/4861914.html

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值