Hdu 1299

Diophantus of Alexandria

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2326    Accepted Submission(s): 887


Problem Description
Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of the first mathematicians to study equations where variables were restricted to integral values. In honor of him, these equations are commonly called diophantine equations. One of the most famous diophantine equation is x^n + y^n = z^n. Fermat suggested that for n > 2, there are no solutions with positive integral values for x, y and z. A proof of this theorem (called Fermat's last theorem) was found only recently by Andrew Wiles.

Consider the following diophantine equation: 

1 / x + 1 / y = 1 / n where x, y, n ∈ N+ (1)


Diophantus is interested in the following question: for a given n, how many distinct solutions (i. e., solutions satisfying x ≤ y) does equation (1) have? For example, for n = 4, there are exactly three distinct solutions: 

1 / 5 + 1 / 20 = 1 / 4
1 / 6 + 1 / 12 = 1 / 4
1 / 8 + 1 / 8 = 1 / 4



Clearly, enumerating these solutions can become tedious for bigger values of n. Can you help Diophantus compute the number of distinct solutions for big values of n quickly?

 

Input
The first line contains the number of scenarios. Each scenario consists of one line containing a single number n (1 ≤ n ≤ 10^9). 

 

Output
The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Next, print a single line with the number of distinct solutions of equation (1) for the given value of n. Terminate each scenario with a blank line. 
Sample Input
2
4
1260
Sample Output
Scenario #1: 3
Scenario #2: 113
令y = n + k (k >= 1), 则x = n^2/k + n , x为整数, 所以k为n^2的约数,因为x >= y, 所以k <= n, 所以
可以将问题简化为求n^2的不大于n的约数的个数,然后素数分解。
Accepted Code:
 1 /*************************************************************************
 2     > File Name: 1299.cpp
 3     > Author: Stomach_ache
 4     > Mail: sudaweitong@gmail.com
 5     > Created Time: 2014年07月10日 星期四 16时39分38秒
 6     > Propose: 
 7  ************************************************************************/
 8 
 9 #include <cmath>
10 #include <string>
11 #include <cstdio>
12 #include <fstream>
13 #include <cstring>
14 #include <iostream>
15 #include <algorithm>
16 using namespace std;
17 
18 int n;
19 int prime[100000];
20 bool vis[100000];
21 int cnt = 0;
22 
23 void isPrime() {
24       cnt = 0;
25     int k = (int)sqrt(1000000000.0) + 1;
26       for (int i = 0; i <= k; i++) vis[i] = true;
27     for (int i = 2; i <= k; i++) {
28           if (vis[i]) {
29             prime[cnt++] = i;
30             for (int j = i*i; j <= k; j += i) vis[j] = false;
31         }
32     }
33 }
34 
35 int main(void) {
36       isPrime();
37     int c = 1;
38     int t;
39     scanf("%d", &t);
40       while (t--) {
41           scanf("%d", &n);
42           int ans = 1;
43         for (int i = 0; i < cnt && prime[i] <= n; i++) {
44               int tmp = 0;
45               while (n % prime[i] == 0) {
46                   tmp++;
47                 n /= prime[i];
48             }
49             ans *= 1 + 2 * tmp;
50         }
51         if (n > 1) ans *= 3;
52         printf("Scenario #%d:\n", c++);
53         printf("%d\n\n", (ans + 1) / 2);
54     }
55 
56     return 0;
57 }

 

 
 

转载于:https://www.cnblogs.com/Stomach-ache/p/3836614.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值