POJ 2888 Magic Bracelet [Polya 矩阵乘法]

本文介绍了一个与哈利波特主题相关的图论问题,通过建立不允许相邻颜色的图模型,利用矩阵快速幂求解特定长度的路径数量。文章详细展示了如何通过筛法预处理质数、求欧拉函数值以及进行矩阵乘法和幂运算,最终解决环状排列中有限制条件的染色问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门

题意:竟然扯到哈利波特了....

和上一题差不多,但颜色数很少,给出不能相邻的颜色对


 

可以相邻的连边建图矩阵乘法求回路个数就得到$f(i)$了....

感觉这样的环上有限制问题挺套路的...旋转的等价循环个数$t$我们很清楚了,并且环上每$t$个元素各属于不同的循环,我们只要求出$t$个元素满足限制的方案数就能得到$C(f)$了

然后再加上$gcd$取值讨论就降到根号了

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=1e5+5,P=9973;
typedef long long ll;
inline int read(){
    char c=getchar();int x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1; c=getchar();}
    while(c>='0'&&c<='9'){x=x*10+c-'0'; c=getchar();}
    return x*f;
}
int n,m,k,u,v;
int p[N];
bool notp[N];
void sieve(int n){
    for(int i=2;i<=n;i++){
        if(!notp[i]) p[++p[0]]=i;
        for(int j=1;j<=p[0]&&i*p[j]<=n;j++){
            notp[i*p[j]]=1;
            if(i%p[j]==0) break;
        }
    }
}
inline int phi(int n){
    int re=n,m=sqrt(n);
    for(int i=1;i<=p[0]&&p[i]<=m&&p[i]<=n;i++) if(n%p[i]==0){
        re=re/p[i]*(p[i]-1);
        while(n%p[i]==0) n/=p[i];
    }
    if(n>1) re=re/n*(n-1);
    return re%P;
}
struct Matrix{
    int a[11][11];
    int* operator [](int x){return a[x];}
    Matrix(){memset(a,0,sizeof(a));}
    void ini(){for(int i=1;i<=10;i++) a[i][i]=1;}
}a;
Matrix operator *(Matrix a,Matrix b){
    Matrix c;
    for(int k=1;k<=m;k++)
        for(int i=1;i<=m;i++) if(a[i][k])
            for(int j=1;j<=m;j++) if(b[k][j])
                (c[i][j]+=a[i][k]*b[k][j])%=P;
    return c;
}
Matrix operator ^(Matrix a,int b){
    Matrix re;re.ini();
    for(;b;b>>=1,a=a*a)
        if(b&1) re=re*a;
    return re;
}
inline void mod(int &x){if(x>=P) x-=P;}
int f(int x){
    Matrix b=a^x;
    int re=0;
    for(int i=1;i<=m;i++) mod(re+=b[i][i]);
    return re;
}
inline int Pow(int a,int b){
    int re=1;
    a%=P;
    for(;b;b>>=1,a=a*a%P)
        if(b&1) re=re*a%P;
    return re;
}
inline int Inv(int a){return Pow(a,P-2);}
void solve(){
    int m=sqrt(n),ans=0;
    for(int i=1;i<=m;i++) if(n%i==0){
        mod(ans+= f(i)*phi(n/i)%P);
        if(i*i!=n) mod(ans+= f(n/i)*phi(i)%P);
    }
    printf("%d\n",ans*Inv(n)%P);
}
int main(){
    freopen("in","r",stdin);
    sieve(32000);
    int T=read();
    while(T--){
        n=read();m=read();k=read();
        for(int i=1;i<=m;i++) for(int j=1;j<=m;j++) a[i][j]=1;
        for(int i=1;i<=k;i++){
            u=read();v=read();
            a[u][v]=a[v][u]=0;
        }
        solve();
    }
}

 

POJ 3213 题目是一个关于矩阵乘法的经典计算机科学问题。矩阵乘法通常是线性代数的基础操作,给定两个矩阵 A 和 B,你需要计算它们的乘积 C = A * B,其中每个元素 C[i][j] 是对应位置上 A 的行向量与 B 的列向量的点积。 以下是一个简单的 Java 代码示例,使用嵌套循环来实现矩阵乘法: ```java import java.util.Scanner; public class MatrixMultiplication { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); // 输入矩阵的维度 System.out.println("Enter the dimensions of matrix A (m x n):"); int m = scanner.nextInt(); int n = scanner.nextInt(); // 创建矩阵 A 和 B int[][] matrixA = new int[m][n]; int[][] matrixB = new int[n][n]; // 读取矩阵 A 的元素 System.out.println("Enter elements of matrix A:"); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { matrixA[i][j] = scanner.nextInt(); } } // 读取矩阵 B 的元素(假设输入的矩阵都是方阵,大小为 n x n) System.out.println("Enter elements of matrix B:"); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { matrixB[i][j] = scanner.nextInt(); } } // 矩阵乘法 int[][] result = new int[m][n]; // 结果矩阵 for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) { // 每次循环k用于遍历B的列 result[i][j] += matrixA[i][k] * matrixB[k][j]; } } } // 输出结果矩阵 System.out.println("Matrix multiplication result:"); for (int[] row : result) { for (int element : row) { System.out.print(element + " "); } System.out.println(); } scanner.close(); } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值