codeforces 765 D Artsem and Saunders

本文探讨了一道关于函数构造的问题,通过分析给定函数f[x],寻找满足特定条件的函数g(x)和h(x)。利用并查集算法进行节点连接,确保函数的正确构造,并检查生成的函数是否符合题目要求。

传送门

题意:给你一个函数f[x],问你是否存在满足 g(h(x)) = x for all , and h(g(x)) = f(x) for all , 的两个函数

题解:先化简公式得到一个构造g(x)的公式,g(x)=g(f(x)),并查集将x和f(x)捆绑起来,然后for一遍g(x)这个函数,将属于同一个集团里面的编上相同的号码,然后推出公式h(x)=f(h(x))得到h(x)函数的值,最后用题目条件分别check一下生成的函数

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <map>
#include <queue>
#include <vector>
#include <cstring>
#include <iomanip>
#include <set>
#include<ctime>
#include<unordered_map>
//CLOCKS_PER_SEC
#define se second
#define fi first
#define ll long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define Pii pair<int,int>
#define Pli pair<ll,int>
#define ull unsigned long long
#define pb push_back
#define fio ios::sync_with_stdio(false);cin.tie(0)
const int N=1e6+10;
const ull base=163;
const int INF=0x3f3f3f3f;
using namespace std;
int f[N],g[N],h[N];
int fa[N];
int F(int x){
    return fa[x]==x?x:fa[x]=F(fa[x]);
}
map<int,int>mp;
int main(){
    fio;
    int n;
    cin>>n;
    for(int i=1;i<=n;i++)
    {
        cin>>f[i];
    }
    for(int i=1;i<=N-5;i++)fa[i]=i;
    for(int i=1;i<=n;i++){
        int u=i,v=f[i];
        u=F(i),v=F(v);
        if(u!=v){
            fa[u]=v;
        }
    }
    int m=0;
    for(int i=1;i<=n;i++){
        if(!mp[F(f[i])]){
            mp[F(f[i])]=++m;
        }
        g[i]=mp[F(f[i])];
    }
    for(int i=1;i<=n;i++){
        h[g[i]]=f[i];
    }
    for(int i=1;i<=n;i++){
        if(h[g[i]]!=f[i]){
            return cout<<-1,0;
        }
    }
    for(int i=1;i<=m;i++){
        if(g[h[i]]!=i){
            return cout<<-1,0;
        }
    }
    cout<<m<<endl;
    for(int i=1;i<=n;i++){
        cout<<g[i]<<" ";
    }
    cout<<endl;;
    for(int i=1;i<=m;i++){
        cout<<h[i]<<" ";
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/Mrleon/p/9098848.html

### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值