1,基本概念:
工作队列(workqueue),是内核中一种将任务推后执行的机制。与软中断,tasklet不同的是,工作队列基于内核线程实现,能够休眠。下面,我们首先了解工作队列的几个概念。
(1)work:工作。将要被调度执行的一个任务。
(2)worker:工人。实际调度执行任务的实体。
(3)workqueue:工作队列。包含了一系列工作和工人的对象。
进一步,我们再看看内核提供的有关工作队列的接口:
(1)创建工作队列:create_workqueue
用来创建一个工作队列 workqueue。
(2)创建工人:create_worker
用来创建一个执行工作的工人worker。
(3)调度工作:schedule_work
用户初始化一个work,通过schedule_work接口将work加入工作队列,并调度工作队列执行该任务。
由上所述,我们可以看到工作队列的本质:
(1)首先,创建好一个workqueue,并创建相应的workers,将这些workers挂接到workqueue中。
(2)创建一个work,调用schedule_work()接口将work加入workqueue队列,并调度workqueue中的worker执行。
(3)每个worker是一个内核线程,在内核线程内部执行work的处理函数。
2,数据结构:
(1)work_struct:
struct work_struct {
atomic_long_t data; // 工作处理函数数据
struct list_head entry; // 链表节点,挂在workqueue上,其实是挂在 worker_pool上
work_func_t func; // 工作处理函数
#ifdef CONFIG_LOCKDEP
struct lockdep_map lockdep_map;
#endif
};
(2)worker:
struct worker {
/* on idle list while idle, on busy hash table while busy */
union {
struct list_head entry; /* L: while idle */
struct hlist_node hentry; /* L: while busy */
}; // 链表节点,挂接在idle/busy链表的节点
struct work_struct *current_work; /* L: work being processed */ // 当前调度处理的工作
work_func_t current_func; /* L: current_work's fn */ // 当前的处理函数
struct pool_workqueue *current_pwq; /* L: current_work's pwq */
struct list_head scheduled; /* L: scheduled works */ // 当前被调度的所有工作
/* 64 bytes boundary on 64bit, 32 on 32bit */
struct task_struct *task; /* I: worker task */ // worker线程
struct worker_pool *pool; /* A: the associated pool */ // worker线程池
/* L: for rescuers */
struct list_head node; /* A: anchored at pool->workers */ // 挂接在worker_pool下的节点
/* A: runs through worker->node */
unsigned long last_active; /* L: last active timestamp */
unsigned int flags; /* X: flags */
int id; /* I: worker id */
/*
* Opaque string set with work_set_desc(). Printed out with task
* dump for debugging - WARN, BUG, panic or sysrq.
*/
char desc[WORKER_DESC_LEN];
/* used only by rescuers to point to the target workqueue */
struct workqueue_struct *rescue_wq; /* I: the workqueue to rescue */
};
(3)workqueue_struct:
struct workqueue_struct {
struct list_head pwqs; /* WR: all pwqs of this wq */
struct list_head list; /* PR: list of all workqueues */ //链表节点,挂接在系统全局workqueue链表上
struct mutex mutex; /* protects this wq */
int work_color; /* WQ: current work color */
int flush_color; /* WQ: current flush color */
atomic_t nr_pwqs_to_flush; /* flush in progress */
struct wq_flusher *first_flusher; /* WQ: first flusher */
struct list_head flusher_queue; /* WQ: flush waiters */
struct list_head flusher_overflow; /* WQ: flush overflow list */
struct list_head maydays; /* MD: pwqs requesting rescue */
struct worker *rescuer; /* I: rescue worker */
int nr_drainers; /* WQ: drain in progress */
int saved_max_active; /* WQ: saved pwq max_active */
struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
#ifdef CONFIG_SYSFS
struct wq_device *wq_dev; /* I: for sysfs interface */
#endif
#ifdef CONFIG_LOCKDEP
struct lockdep_map lockdep_map;
#endif
char name[WQ_NAME_LEN]; /* I: workqueue name */ // workqueue名字
/*
* Destruction of workqueue_struct is sched-RCU protected to allow
* walking the workqueues list without grabbing wq_pool_mutex.
* This is used to dump all workqueues from sysrq.
*/
struct rcu_head rcu;
/* hot fields used during command issue, aligned to cacheline */
unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
};
(4)worker_pool:
struct worker_pool {
spinlock_t lock; /* the pool lock */
int cpu; /* I: the associated cpu */
int node; /* I: the associated node ID */
int id; /* I: pool ID */
unsigned int flags; /* X: flags */
unsigned long watchdog_ts; /* L: watchdog timestamp */
struct list_head worklist; /* L: list of pending works */ // 挂接在该worker_pool下的所有work
int nr_workers; /* L: total number of workers */ // 该worker_pool下所有worker的个数
int nr_idle; /* L: currently idle workers */ // 该worker_pool下空闲worker的个数
struct list_head idle_list; /* X: list of idle workers */
struct timer_list idle_timer; /* L: worker idle timeout */
struct timer_list mayday_timer; /* L: SOS timer for workers */
/* a workers is either on busy_hash or idle_list, or the manager */
DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
/* L: hash of busy workers */
struct worker *manager; /* L: purely informational */
struct list_head workers; /* A: attached workers */ // 该worker_pool下所有worker链表
struct completion *detach_completion; /* all workers detached */ //完成量,用于删除worker
struct ida worker_ida; /* worker IDs for task name */
struct workqueue_attrs *attrs; /* I: worker attributes */
struct hlist_node hash_node; /* PL: unbound_pool_hash node */
int refcnt; /* PL: refcnt for unbound pools */
/*
* The current concurrency level. As it's likely to be accessed
* from other CPUs during try_to_wake_up(), put it in a separate
* cacheline.
*/
atomic_t nr_running ____cacheline_aligned_in_smp;
/*
* Destruction of pool is sched-RCU protected to allow dereferences
* from get_work_pool().
*/
struct rcu_head rcu;
} ____cacheline_aligned_in_smp;
数据结构和代码的内容比较多,但我们可以绕过这些细节,找到我们关心的核心字段和接口,理解了核心思想之后,再去扩展这些细节。
3,接口实现:
(1)创建workqueue:
#define create_workqueue(name) \
alloc_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, 1, (name))
#define alloc_workqueue(fmt, flags, max_active, args...) \
__alloc_workqueue_key((fmt), (flags), (max_active), \
NULL, NULL, ##args)
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
unsigned int flags,
int max_active,
struct lock_class_key *key,
const char *lock_name, ...)
{
size_t tbl_size = 0;
va_list args;
struct workqueue_struct *wq;
struct pool_workqueue *pwq;
/*
* Unbound && max_active == 1 used to imply ordered, which is no
* longer the case on NUMA machines due to per-node pools. While
* alloc_ordered_workqueue() is the right way to create an ordered
* workqueue, keep the previous behavior to avoid subtle breakages
* on NUMA.
*/
if ((flags & WQ_UNBOUND) && max_active == 1)
flags |= __WQ_ORDERED;
/* see the comment above the definition of WQ_POWER_EFFICIENT */
if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
flags |= WQ_UNBOUND;
/* allocate wq and format name */
if (flags & WQ_UNBOUND)
tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); // 分配workqueue_struct实例
if (!wq)
return NULL;
if (flags & WQ_UNBOUND) {
wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
if (!wq->unbound_attrs)
goto err_free_wq;
}
va_start(args, lock_name);
vsnprintf(wq->name, sizeof(wq->name), fmt, args); // 赋值workqueue_struct名字
va_end(args);
max_active = max_active ?: WQ_DFL_ACTIVE;
max_active = wq_clamp_max_active(max_active, flags, wq->name);
/* init wq */
// 初始化 workqueue
wq->flags = flags;
wq->saved_max_active = max_active;
mutex_init(&wq->mutex);
atomic_set(&wq->nr_pwqs_to_flush, 0);
INIT_LIST_HEAD(&wq->pwqs);
INIT_LIST_HEAD(&wq->flusher_queue);
INIT_LIST_HEAD(&wq->flusher_overflow);
INIT_LIST_HEAD(&wq->maydays);
lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
INIT_LIST_HEAD(&wq->list);
if (alloc_and_link_pwqs(wq) < 0)
goto err_free_wq;
if (wq_online && init_rescuer(wq) < 0)
goto err_destroy;
if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
goto err_destroy;
/*
* wq_pool_mutex protects global freeze state and workqueues list.
* Grab it, adjust max_active and add the new @wq to workqueues
* list.
*/
mutex_lock(&wq_pool_mutex);
mutex_lock(&wq->mutex);
for_each_pwq(pwq, wq)
pwq_adjust_max_active(pwq);
mutex_unlock(&wq->mutex);
list_add_tail_rcu(&wq->list, &workqueues); // 将workqueue加入全局链表 workqueues
mutex_unlock(&wq_pool_mutex);
return wq;
err_free_wq:
free_workqueue_attrs(wq->unbound_attrs);
kfree(wq);
return NULL;
err_destroy:
destroy_workqueue(wq);
return NULL;
}
(2)创建 worker:
static struct worker *create_worker(struct worker_pool *pool)
{
struct worker *worker = NULL;
int id = -1;
char id_buf[16];
/* ID is needed to determine kthread name */
id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); // 分配worker_pool下的worker id
if (id < 0)
goto fail;
worker = alloc_worker(pool->node); // 创建worker实例
if (!worker)
goto fail;
worker->id = id; // 赋值worker id
if (pool->cpu >= 0)
snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
pool->attrs->nice < 0 ? "H" : "");
else
snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
"kworker/%s", id_buf); // 创建worker的内核工作线程
if (IS_ERR(worker->task))
goto fail;
set_user_nice(worker->task, pool->attrs->nice);
kthread_bind_mask(worker->task, pool->attrs->cpumask);
/* successful, attach the worker to the pool */
worker_attach_to_pool(worker, pool); // 将该worker挂接到 worker_pool的workers链表下
/* start the newly created worker */
spin_lock_irq(&pool->lock);
worker->pool->nr_workers++; // 更新相应worker_pool下的worker个数
worker_enter_idle(worker); // 将该worker挂接到 idle链表下
wake_up_process(worker->task); // 唤醒该worker内核线程,执行worker_thread
spin_unlock_irq(&pool->lock);
return worker;
fail:
if (id >= 0)
ida_simple_remove(&pool->worker_ida, id);
kfree(worker);
return NULL;
}
(3)调度work:
static inline bool schedule_work(struct work_struct *work)
{
return queue_work(system_wq, work); // 默认将work加入 system_wq 下,system_wq是系统启动时自动创建的workqueue。如果要调度用户自定义的workqueue,可以直接使用 queue_work 接口。
}
static inline bool queue_work(struct workqueue_struct *wq,
struct work_struct *work)
{
return queue_work_on(WORK_CPU_UNBOUND, wq, work);
}
bool queue_work_on(int cpu, struct workqueue_struct *wq,
struct work_struct *work)
{
bool ret = false;
unsigned long flags;
local_irq_save(flags);
if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
__queue_work(cpu, wq, work);
ret = true;
}
local_irq_restore(flags);
return ret;
}
static void __queue_work(int cpu, struct workqueue_struct *wq,
struct work_struct *work)
{
struct pool_workqueue *pwq;
struct worker_pool *last_pool;
struct list_head *worklist;
unsigned int work_flags;
unsigned int req_cpu = cpu;
/*
* While a work item is PENDING && off queue, a task trying to
* steal the PENDING will busy-loop waiting for it to either get
* queued or lose PENDING. Grabbing PENDING and queueing should
* happen with IRQ disabled.
*/
lockdep_assert_irqs_disabled();
debug_work_activate(work);
/* if draining, only works from the same workqueue are allowed */
if (unlikely(wq->flags & __WQ_DRAINING) &&
WARN_ON_ONCE(!is_chained_work(wq)))
return;
retry:
if (req_cpu == WORK_CPU_UNBOUND)
cpu = wq_select_unbound_cpu(raw_smp_processor_id());
/* pwq which will be used unless @work is executing elsewhere */
if (!(wq->flags & WQ_UNBOUND))
pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
else
pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
/*
* If @work was previously on a different pool, it might still be
* running there, in which case the work needs to be queued on that
* pool to guarantee non-reentrancy.
*/
last_pool = get_work_pool(work); // 找到合适的 worker_pool
if (last_pool && last_pool != pwq->pool) {
struct worker *worker;
spin_lock(&last_pool->lock);
worker = find_worker_executing_work(last_pool, work); // 找到合适的worker
if (worker && worker->current_pwq->wq == wq) {
pwq = worker->current_pwq;
} else {
/* meh... not running there, queue here */
spin_unlock(&last_pool->lock);
spin_lock(&pwq->pool->lock);
}
} else {
spin_lock(&pwq->pool->lock);
}
/*
* pwq is determined and locked. For unbound pools, we could have
* raced with pwq release and it could already be dead. If its
* refcnt is zero, repeat pwq selection. Note that pwqs never die
* without another pwq replacing it in the numa_pwq_tbl or while
* work items are executing on it, so the retrying is guaranteed to
* make forward-progress.
*/
if (unlikely(!pwq->refcnt)) {
if (wq->flags & WQ_UNBOUND) {
spin_unlock(&pwq->pool->lock);
cpu_relax();
goto retry;
}
/* oops */
WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
wq->name, cpu);
}
/* pwq determined, queue */
trace_workqueue_queue_work(req_cpu, pwq, work);
if (WARN_ON(!list_empty(&work->entry))) {
spin_unlock(&pwq->pool->lock);
return;
}
pwq->nr_in_flight[pwq->work_color]++;
work_flags = work_color_to_flags(pwq->work_color);
if (likely(pwq->nr_active < pwq->max_active)) {
trace_workqueue_activate_work(work);
pwq->nr_active++;
worklist = &pwq->pool->worklist;
if (list_empty(worklist))
pwq->pool->watchdog_ts = jiffies;
} else {
work_flags |= WORK_STRUCT_DELAYED;
worklist = &pwq->delayed_works;
}
insert_work(pwq, work, worklist, work_flags); // 将work加入worker_pool的worklist中
spin_unlock(&pwq->pool->lock);
}
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
struct list_head *head, unsigned int extra_flags)
{
struct worker_pool *pool = pwq->pool;
/* we own @work, set data and link */
set_work_pwq(work, pwq, extra_flags);
list_add_tail(&work->entry, head); // 加入worker_pool链表
get_pwq(pwq);
/*
* Ensure either wq_worker_sleeping() sees the above
* list_add_tail() or we see zero nr_running to avoid workers lying
* around lazily while there are works to be processed.
*/
smp_mb();
if (__need_more_worker(pool))
wake_up_worker(pool); // 调度worker_pool执行worker
}
static void wake_up_worker(struct worker_pool *pool)
{
struct worker *worker = first_idle_worker(pool);
if (likely(worker))
wake_up_process(worker->task); // 执行注册的worker内核线程:worker_thread
}
下面我们看看最终的 worker_thread函数具体如何执行的:
static int worker_thread(void *__worker)
{
struct worker *worker = __worker;
struct worker_pool *pool = worker->pool; // 找到worker所属的worker_pool
/* tell the scheduler that this is a workqueue worker */
set_pf_worker(true);
woke_up:
spin_lock_irq(&pool->lock);
/* am I supposed to die? */
if (unlikely(worker->flags & WORKER_DIE)) {
spin_unlock_irq(&pool->lock);
WARN_ON_ONCE(!list_empty(&worker->entry));
set_pf_worker(false);
set_task_comm(worker->task, "kworker/dying");
ida_simple_remove(&pool->worker_ida, worker->id);
worker_detach_from_pool(worker);
kfree(worker);
return 0;
}
worker_leave_idle(worker);
recheck:
/* no more worker necessary? */
if (!need_more_worker(pool))
goto sleep;
/* do we need to manage? */
if (unlikely(!may_start_working(pool)) && manage_workers(worker))
goto recheck;
/*
* ->scheduled list can only be filled while a worker is
* preparing to process a work or actually processing it.
* Make sure nobody diddled with it while I was sleeping.
*/
WARN_ON_ONCE(!list_empty(&worker->scheduled));
/*
* Finish PREP stage. We're guaranteed to have at least one idle
* worker or that someone else has already assumed the manager
* role. This is where @worker starts participating in concurrency
* management if applicable and concurrency management is restored
* after being rebound. See rebind_workers() for details.
*/
worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
do { // 循环处理 pool下面worklist中的所有work
struct work_struct *work =
list_first_entry(&pool->worklist,
struct work_struct, entry); // 取出首个work
pool->watchdog_ts = jiffies;
if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
/* optimization path, not strictly necessary */
process_one_work(worker, work); // 实际执行用户注册的处理函数
if (unlikely(!list_empty(&worker->scheduled)))
process_scheduled_works(worker);
} else {
move_linked_works(work, &worker->scheduled, NULL);
process_scheduled_works(worker);
}
} while (keep_working(pool));
worker_set_flags(worker, WORKER_PREP);
sleep:
/*
* pool->lock is held and there's no work to process and no need to
* manage, sleep. Workers are woken up only while holding
* pool->lock or from local cpu, so setting the current state
* before releasing pool->lock is enough to prevent losing any
* event.
*/
worker_enter_idle(worker);
__set_current_state(TASK_IDLE);
spin_unlock_irq(&pool->lock);
schedule();
goto woke_up;
}
static void process_one_work(struct worker *worker, struct work_struct *work)
__releases(&pool->lock)
__acquires(&pool->lock)
{
struct pool_workqueue *pwq = get_work_pwq(work);
struct worker_pool *pool = worker->pool;
bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
int work_color;
struct worker *collision;
#ifdef CONFIG_LOCKDEP
/*
* It is permissible to free the struct work_struct from
* inside the function that is called from it, this we need to
* take into account for lockdep too. To avoid bogus "held
* lock freed" warnings as well as problems when looking into
* work->lockdep_map, make a copy and use that here.
*/
struct lockdep_map lockdep_map;
lockdep_copy_map(&lockdep_map, &work->lockdep_map);
#endif
/* ensure we're on the correct CPU */
WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
raw_smp_processor_id() != pool->cpu);
/*
* A single work shouldn't be executed concurrently by
* multiple workers on a single cpu. Check whether anyone is
* already processing the work. If so, defer the work to the
* currently executing one.
*/
collision = find_worker_executing_work(pool, work);
if (unlikely(collision)) {
move_linked_works(work, &collision->scheduled, NULL);
return;
}
/* claim and dequeue */
debug_work_deactivate(work);
hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
worker->current_work = work;
worker->current_func = work->func;
worker->current_pwq = pwq;
work_color = get_work_color(work); // 初始化 worker 的工作内容
/*
* Record wq name for cmdline and debug reporting, may get
* overridden through set_worker_desc().
*/
strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
list_del_init(&work->entry);
/*
* CPU intensive works don't participate in concurrency management.
* They're the scheduler's responsibility. This takes @worker out
* of concurrency management and the next code block will chain
* execution of the pending work items.
*/
if (unlikely(cpu_intensive))
worker_set_flags(worker, WORKER_CPU_INTENSIVE);
/*
* Wake up another worker if necessary. The condition is always
* false for normal per-cpu workers since nr_running would always
* be >= 1 at this point. This is used to chain execution of the
* pending work items for WORKER_NOT_RUNNING workers such as the
* UNBOUND and CPU_INTENSIVE ones.
*/
if (need_more_worker(pool))
wake_up_worker(pool);
/*
* Record the last pool and clear PENDING which should be the last
* update to @work. Also, do this inside @pool->lock so that
* PENDING and queued state changes happen together while IRQ is
* disabled.
*/
set_work_pool_and_clear_pending(work, pool->id);
spin_unlock_irq(&pool->lock);
lock_map_acquire(&pwq->wq->lockdep_map);
lock_map_acquire(&lockdep_map);
/*
* Strictly speaking we should mark the invariant state without holding
* any locks, that is, before these two lock_map_acquire()'s.
*
* However, that would result in:
*
* A(W1)
* WFC(C)
* A(W1)
* C(C)
*
* Which would create W1->C->W1 dependencies, even though there is no
* actual deadlock possible. There are two solutions, using a
* read-recursive acquire on the work(queue) 'locks', but this will then
* hit the lockdep limitation on recursive locks, or simply discard
* these locks.
*
* AFAICT there is no possible deadlock scenario between the
* flush_work() and complete() primitives (except for single-threaded
* workqueues), so hiding them isn't a problem.
*/
lockdep_invariant_state(true);
trace_workqueue_execute_start(work);
worker->current_func(work); // 最终调度用户注册的处理函数
/*
* While we must be careful to not use "work" after this, the trace
* point will only record its address.
*/
trace_workqueue_execute_end(work);
lock_map_release(&lockdep_map);
lock_map_release(&pwq->wq->lockdep_map);
if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
" last function: %pf\n",
current->comm, preempt_count(), task_pid_nr(current),
worker->current_func);
debug_show_held_locks(current);
dump_stack();
}
/*
* The following prevents a kworker from hogging CPU on !PREEMPT
* kernels, where a requeueing work item waiting for something to
* happen could deadlock with stop_machine as such work item could
* indefinitely requeue itself while all other CPUs are trapped in
* stop_machine. At the same time, report a quiescent RCU state so
* the same condition doesn't freeze RCU.
*/
cond_resched();
spin_lock_irq(&pool->lock);
/* clear cpu intensive status */
if (unlikely(cpu_intensive))
worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
/* we're done with it, release */
hash_del(&worker->hentry);
worker->current_work = NULL;
worker->current_func = NULL;
worker->current_pwq = NULL;
pwq_dec_nr_in_flight(pwq, work_color);
}
到目前为止,我们从宏观的角度已经分析了workqueue的整体工作流程。但是还有一点我们也需要了解,就是系统在初始化的过程中,给我们创建了几个默认的 workqueue,使得我们不必再去主动创建workqueue和worker。在使用这些 workqueue的时候,我们只需要调用 schedule_work(默认注册到system_wq)或者queue_work(指定系统中已经存在的workqueue)接口就好。这大大的简化了workqueue的使用方法,使得用户编程更加便捷。
(1)系统默认创建的workqueue:
int __init workqueue_init_early(void)
{
int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
int i, cpu;
WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
/* initialize CPU pools */
for_each_possible_cpu(cpu) {
struct worker_pool *pool;
i = 0;
for_each_cpu_worker_pool(pool, cpu) {
BUG_ON(init_worker_pool(pool));
pool->cpu = cpu;
cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
pool->attrs->nice = std_nice[i++];
pool->node = cpu_to_node(cpu);
/* alloc pool ID */
mutex_lock(&wq_pool_mutex);
BUG_ON(worker_pool_assign_id(pool));
mutex_unlock(&wq_pool_mutex);
}
}
/* create default unbound and ordered wq attrs */
for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
struct workqueue_attrs *attrs;
BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
attrs->nice = std_nice[i];
unbound_std_wq_attrs[i] = attrs;
/*
* An ordered wq should have only one pwq as ordering is
* guaranteed by max_active which is enforced by pwqs.
* Turn off NUMA so that dfl_pwq is used for all nodes.
*/
BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
attrs->nice = std_nice[i];
attrs->no_numa = true;
ordered_wq_attrs[i] = attrs;
}
// 以下是系统默认创建的workqueue
system_wq = alloc_workqueue("events", 0, 0);
system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
system_long_wq = alloc_workqueue("events_long", 0, 0);
system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
WQ_UNBOUND_MAX_ACTIVE);
system_freezable_wq = alloc_workqueue("events_freezable",
WQ_FREEZABLE, 0);
system_power_efficient_wq = alloc_workqueue("events_power_efficient",
WQ_POWER_EFFICIENT, 0);
system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
WQ_FREEZABLE | WQ_POWER_EFFICIENT,
0);
BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
!system_unbound_wq || !system_freezable_wq ||
!system_power_efficient_wq ||
!system_freezable_power_efficient_wq);
return 0;
}
(2)系统默认创建的 worker:
int __init workqueue_init(void)
{
struct workqueue_struct *wq;
struct worker_pool *pool;
int cpu, bkt;
/*
* It'd be simpler to initialize NUMA in workqueue_init_early() but
* CPU to node mapping may not be available that early on some
* archs such as power and arm64. As per-cpu pools created
* previously could be missing node hint and unbound pools NUMA
* affinity, fix them up.
*
* Also, while iterating workqueues, create rescuers if requested.
*/
wq_numa_init();
mutex_lock(&wq_pool_mutex);
for_each_possible_cpu(cpu) {
for_each_cpu_worker_pool(pool, cpu) {
pool->node = cpu_to_node(cpu);
}
}
list_for_each_entry(wq, &workqueues, list) {
wq_update_unbound_numa(wq, smp_processor_id(), true);
WARN(init_rescuer(wq),
"workqueue: failed to create early rescuer for %s",
wq->name);
}
mutex_unlock(&wq_pool_mutex);
/* create the initial workers */
for_each_online_cpu(cpu) {
for_each_cpu_worker_pool(pool, cpu) {
pool->flags &= ~POOL_DISASSOCIATED;
BUG_ON(!create_worker(pool)); // 创建默认worker
}
}
hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
BUG_ON(!create_worker(pool)); // 创建默认worker
wq_online = true;
wq_watchdog_init();
return 0;