牛顿迭代法(Newton's Method)

牛顿迭代法是一种利用迭代方法求解函数方程根的高效算法。它通过不断求取切线来逼近方程的精确解。本文介绍了牛顿法的基本原理,并通过求方根的具体例子展示了其实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

牛顿迭代法(简称牛顿法)由英国著名的数学家牛顿爵士最早提出。可是,这


一方法在牛顿生前并未公开发表(讨厌的数学家们还是鼓捣出来了)
牛顿法的作用是使用迭代的方法来求解函数方程的根。

简单地说,牛顿法就是不断求取切线的过程。


对于形如f(x)=0的方程,首先随意估算一个解x0,再把该预计值代入原方程中。

因为一般不会正好选择到正确的解。所以有f(x)=a。这时计算函数在x0处的斜率,和这条斜率与x轴的交点x1。


f(x)=0中精确解的意义是,当取得解的时候。函数值为零(即f(x)的精确解是函数的零点)。因此,x1比x0更加接近精确的解。仅仅要不断以此方法更新x,就能够取得无限接近的精确的解。




可是,有可能会遇到牛顿迭代法无法收敛的情况。

比方函数有多个零点,或者函数不连续的时候。




牛顿法举例


以下介绍使用牛顿迭代法求方根的样例。牛顿迭代法是已知的实现求方根最快的方法之中的一个,仅仅须要迭代几次后就能得到相当精确的结果。




首先设x的m次方根为a。



以下是matlab的编程:

syms x 
f=x^x-10; 
df=diff(f,x); 

eps=1e-6; 
x0=10; 
cnt=0; 
MAXCNT=200; %最大循环次数 
while cnt<MAXCNT %防止无限循环 
x1=x0-subs(f,x,x0)/subs(df,x,x0); %去掉这个分号,能够看到迭代过程.
if (abs(x1-x0)<eps) 
break; 
end 
x0=x1; 
cnt=cnt+1; 
end 
if cnt==MAXCNT 
disp '不收敛' 
else 
vpa(x1,8) 
end


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值