Good Numbers
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3453 Accepted Submission(s): 1090
Problem Description
If we sum up every digit of a number and the result can be exactly divided by 10, we say this number is a good number.
You are required to count the number of good numbers in the range from A to B, inclusive.
You are required to count the number of good numbers in the range from A to B, inclusive.
Input
The first line has a number T (T <= 10000) , indicating the number of test cases.
Each test case comes with a single line with two numbers A and B (0 <= A <= B <= 10 18).
Each test case comes with a single line with two numbers A and B (0 <= A <= B <= 10 18).
Output
For test case X, output "Case #X: " first, then output the number of good numbers in a single line.
Sample Input
2 1 10 1 20
Sample Output
Case #1: 0 Case #2: 1
Hint
The answer maybe very large, we recommend you to use long long instead of int.
Source
Recommend
zhuyuanchen520
题意:求A到B之间 各个位数的和sum%10==0 的数的个数。
题解:数位dp,dp[i][j]表示当前i位mod10=j的个数。
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstdlib>
#define ll long long
using namespace std;
int n;
ll dp[20][20];
int num[20];
ll a,b;
ll dfs(int i,int mod,bool e) {
if(i<=0)return mod?0:1;
if(!e&&dp[i][mod]!=-1)return dp[i][mod];
ll res=0;
int u=e?num[i]:9;
for(int d=0; d<=u; d++) {
int Mod=(mod+d)%10;
res+=dfs(i-1,Mod,e&&d==u);
}
return e?res:dp[i][mod]=res;
}
ll solve(ll x) {
int len=1;
ll k=x;
while(k) {
num[len++]=k%10;
k/=10;
}
num[len]=0;
return dfs(len-1,0,1);
}
int main() {
//freopen("test.in","r",stdin);
int t;
memset(dp,-1,sizeof dp);
cin>>t;
int ca=1;
while(t--) {
scanf("%I64d%I64d",&a,&b);
printf("Case #%d: %I64d\n",ca++,solve(b)-solve(a-1));
}
return 0;
}