$n$阶常微分方程通解中常数独立的意义

本文深入探讨了丁同仁、李承治编著的《常微分方程教程》中关于n阶常微分方程通解的独立性定义,通过多元反函数定理解释了这一定义背后的意义。详细阐述了如何通过初值条件解出常数,并解释了这些常数独立性的实际含义。

丁同仁,李承治编《常微分方程教程》第二版的定义1.3给出了 $ n$ 阶常微分方 程

$ {\displaystyle F(x,y,y',\cdots,y^{(n)})=0 \ \ \ \ \ (1)}$

的通解的定义:

Definition 1 (常微分方程的通解) 如果 $ y=\phi(x,C_1,C_2,\cdots,C_n)$ 是方程 1的解,且常 数 $ C_1,C_2,\cdots,C_n$ 是独立的,那么 称$ y=\phi(x,C_1,C_2,\cdots,C_n)$ 是方程 1 的通 解.所谓$ C_1,C_2,\cdots,C_n$ 独立,其含义是 Jacobi 行列式

$ {\displaystyle \begin{vmatrix} \frac{\partial \phi}{\partial C_1}&\frac{\partial \phi}{\partial C_2}&\cdots&\frac{\partial\phi}{\partial C_n}\\ \frac{\partial \phi'}{\partial C_1}&\frac{\partial \phi'}{\partial C_2}&\cdots&\frac{\partial \phi'}{\partial C_n}\\ \vdots&\vdots& &\vdots\\ \frac{\partial \phi^{(n-1)}}{\partial C_1}&\frac{\partial \phi^{(n-1)}}{\partial C_2}&\cdots&\frac{\partial \phi^{(n-1)}}{\partial C_n}\\ \end{vmatrix}\neq 0. \ \ \ \ \ (2)}$

其中

$ {\displaystyle \begin{cases} \phi=\phi(x,C_1,\cdots,C_n),\\ \phi^{(1)}=\phi^{(1)}(x,C_1,\cdots,C_n),\\ \phi^{(2)}=\phi^{(2)}(x,C_1,\cdots,C_n),\\ \vdots\\ \phi^{(n-1)}=\phi^{(n-1)}(x,C_1,\cdots,C_n). \end{cases} \ \ \ \ \ (3)}$

有些人可能会看不懂,书上 为什么用这么晦涩的方式来定义$ C_1,C_2,\cdots,C_n$ 的独立性?这到底是什么 意思?下面我利用反函数定理来 解释.

对于微分方程 (1),我们给出初值条件:

$ {\displaystyle y(x_0)=y_0,y'(x_0)=y_1,\cdots,y^{(n-1)}(x_0)=y_{n-1}, }$

把这些初值条件代入 (3) 时,得到

$ {\displaystyle \begin{cases} y_0=\phi(x_0,C_1,\cdots,C_n),\\ y_1=\phi^{(1)}(x_0,C_1,\cdots,C_n),\\ \vdots\\ y_{n-1}=\phi^{(n-1)}(x_0,C_1,\cdots,C_n) \end{cases} \ \ \ \ \ (4)}$

由于行列式 (2) 不为0,因此根据多元反函数定理,可得方程组 (4) 中的$ C_1,\cdots,C_n$ 能被解出,也即,$ C_1,\cdots,C_n$ 能分别被表达成 $ y_0,\cdots,y_{n-1},x_0$ 的关系式.这就是常数 $ C_1,\cdots,C_n$ 独立的意义.

转载于:https://www.cnblogs.com/yeluqing/p/3827367.html

一、数据采集层:多源人脸数据获取 该层负责从不同设备 / 渠道采集人脸原始数据,为后续模型训练与识别提供基础样本,核心功能包括: 1. 多设备适配采集 实时摄像头采集: 调用计算机内置摄像头(或外接 USB 摄像头),通过OpenCV的VideoCapture接口实时捕获视频流,支持手动触发 “拍照”(按指定快捷键如Space)或自动定时采集(如每 2 秒采集 1 张),采集时自动框选人脸区域(通过Haar级联分类器初步定位),确保样本聚焦人脸。 支持采集参数配置:可设置采集分辨率(如 640×480、1280×720)、图像格式(JPG/PNG)、单用户采集数量(如默认采集 20 张,确保样本多样性),采集过程中实时显示 “已采集数量 / 目标数量”,避免样本不足。 本地图像 / 视频导入: 支持批量导入本地人脸图像文件(支持 JPG、PNG、BMP 格式),自动过滤非图像文件;导入视频文件(MP4、AVI 格式)时,可按 “固定帧间隔”(如每 10 帧提取 1 张图像)或 “手动选择帧” 提取人脸样本,适用于无实时摄像头场景。 数据集对接: 支持接入公开人脸数据集(如 LFW、ORL),通过预设脚本自动读取数据集目录结构(按 “用户 ID - 样本图像” 分类),快速构建训练样本库,无需手动采集,降低系统开发与测试成本。 2. 采集过程辅助功能 人脸有效性校验:采集时通过OpenCV的Haar级联分类器(或MTCNN轻量级模型)实时检测图像中是否包含人脸,若未检测到人脸(如遮挡、侧脸角度过大),则弹窗提示 “未识别到人脸,请调整姿态”,避免无效样本存入。 样本标签管理:采集时需为每个样本绑定 “用户标签”(如姓名、ID 号),支持手动输入标签或从 Excel 名单批量导入标签(按 “标签 - 采集数量” 对应),采集完成后自动按 “标签 - 序号” 命名文件(如 “张三
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值