Unique Paths
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
一种使用数学方法,简单排列组合。注意可能超过int,使用double,最后强制类型转换。
class Solution {
public:
int uniquePaths(int m, int n) {
if(m <=0 || n <= 0) return 0;
long long res = 1;
for(int i = n; i < m+n-1 ; i++){
res = res * i / (i- n + 1);
}
return (int)res;
}
};
另外一种dp。
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int> > vec(m,vector<int>(n,1));
for (int i=1;i<m;++i) {
for (int j = 1;j<n;++j) {
vec[i][j] = vec[i-1][j] + vec[i][j-1];
}
}
return vec[m-1][n-1];
}
};
Unique Paths II
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
dp做了一些改变。
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& g) {
int m = g.size();
int n =g[0].size();
vector<vector<int> > path(m,vector<int>(n));
for(int i = 0; i < n; ++i) {
if(g[0][i] == 1) {
for(;i<n;++i) {
path[0][i] = 0;
}
break;
}
path[0][i] = 1;
}
for (int j = 0;j <m;++j) {
if(g[j][0] == 1) {
for(;j<m;++j) {
path[j][0] = 0;
}
break;
}
path[j][0] = 1;
}
for(int i =1;i<m;++i) {
for(int j =1;j<n;++j) {
if(g[i][j] == 1)
path[i][j] = 0;
else {
path[i][j] = path[i-1][j] + path[i][j-1];
}
}
}
return path[m-1][n-1];
}
};
话说一遍ac的感觉真好啊~