一个Self Taught Learning的简单例子

本文介绍了一种使用卷积和池化层提取特征,并通过softmax分类器进行0到4的手写数字分类的方法。整个流程包括训练RICA模型、提取特征、训练及测试softmax回归模型等步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

idea:

Concretely, for each example in the the labeled training dataset xl, we forward propagate the example through a convolutional and a pooling layer to obtain the activation of the hidden units a(2). We now represent this example using a(2) (the “replacement” representation), and use this to as the new feature representation with which to train the softmax classifier.

 

design:

In this exercise, our goal is to distinguish between the digits from 0 to 4. We will use an “unlabeled” dataset with all 10 digits to learn the filters; we will then use a labeled dataset with the digits 0 to 4 with which to train the softmax classifier.

 

procedure:

 

Step 1: Generate the input and test data sets

Step 2: Train RICA

Step 3: Extracting features

Step 4: Training and testing the softmax regression model

Step 5: Classifying on the test set

 

reference:

 

转载于:https://www.cnblogs.com/Wanggcong/p/4943697.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值